Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Cabin Air Quality on Board Mir and the International Space Station - A Comparison

2007-07-09
2007-01-3219
The maintenance of the cabin atmosphere aboard spacecraft is critical not only to its habitability but also to its function. Ideally, air quality can be maintained by striking a proper balance between the generation and removal of contaminants. Both very dynamic processes, the balance between generation and removal can be difficult to maintain and control because the state of the cabin atmosphere is in constant evolution responding to different perturbations. Typically, maintaining a clean cabin environment on board crewed spacecraft and space habitats is a central function of the environmental control and life support (ECLS) system. While active air quality control equipment is deployed on board every vehicle to remove carbon dioxide, water vapor, and trace chemical components from the cabin atmosphere, perturbations associated with logistics, vehicle construction and maintenance, and ECLS system configuration influence the resulting cabin atmospheric quality.
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

A Water Recovery System Evolved for Exploration

2006-07-17
2006-01-2274
A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient.
Technical Paper

Performance Characterization of a Prototype Ultra-Short Channel Monolith Catalytic Reactor for Air Quality Control Applications

2005-07-11
2005-01-2868
Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact.
Technical Paper

Resistively-Heated Microlith-Based Adsorber for Carbon Dioxide and Trace Contaminant Removal

2005-07-11
2005-01-2866
An integrated sorber-based Trace Contaminant Control System (TCCS) and Carbon Dioxide Removal Assembly (CDRA) prototype was designed, fabricated and tested. It corresponds to a 1-person load. Performance over several adsorption/regeneration cycles was examined. Vacuum regenerations at effective time/ temperature conditions, and estimated power requirements were experimentally verified for the combined CO2/trace contaminant removal prototype. The current paper details the design and performance of this prototype during initial testing at CO2 and trace contaminant concentrations in the existing CDRA, downstream of the drier. Additional long-term performance characterization is planned at NASA. Potential system design options permitting associated weight, volume savings and logistic benefits, especially as relevant for long-duration space flight, are reviewed.
Technical Paper

Replacement for Internal Active Thermal Control System Fluid Sample Bag Material

2005-07-11
2005-01-3078
The International Space Station (ISS) Internal Active Thermal Control System (IATCS) uses a water based heat transport fluid with specific chemical parameters and additives for corrosion and microbial control. The fluid and hardware have experienced anomalies since activation of the United States Laboratory (USL), including chemical and possibly, microbial corrosion. The required sampling of the fluid has the crewmembers removing samples via an in-line sampling tool to perform real-time trace ammonia contamination tests using color change strips, and filling a 150 ml bag from each loop for the ground laboratory analyses. The former activity requires stable storage of the strips, and for the latter activity, it is highly desirable to return the ground sample as stable as possible. This paper describes the process for materials selection, test methods/set-up, results, and final recommendation for a replacement outer bag.
Technical Paper

Integration of Automated Safing Responses

2004-07-19
2004-01-2550
Environmental Control and Life Support (ECLS) functionality aboard the International Space Station (ISS) includes responding to various emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These responses are designed to aid the crew in their response actions to the emergencies. This paper focuses on the integration of ISS responses to these three emergencies. It includes the ISS automatic integrated vehicle response and the initial crew response. Philosophies regarding the generic response to an on-orbit emergency are described. Software responses are defined for modules on orbit up to the addition of the Docking Compartment (DC1) in the assembly sequence. Possible future improvements are also described.
Technical Paper

International Space Station Automated Safing Responses to Hazardous Atmosphere

2004-07-19
2004-01-2549
Environmental Control and Life Support (ECLS) system functionality aboard the International Space Station (ISS) includes responding to various emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These automated responses are designed to aid the crew in their response actions to the emergencies. The response to a hazardous atmosphere on board the ISS, including the automatic integrated vehicle response and crew actions, is the focus of this paper. Philosophies regarding the detection of and response to emergencies involving chemical releases are described. Vehicle configuration is discussed for currently supported automatic responses, and crew actions are defined for modules on orbit up to the addition of the Docking Compartment (DC1) in the assembly sequence.
Technical Paper

Evolution of the Baseline ISS ECLSS Technologies-The Next Logical Steps

2004-07-19
2004-01-2385
The baseline environmental control and life support (ECLS) systems currently deployed on board the International Space Station (ISS) and that planned to be launched in Node 3 are based upon technologies selected in the early 1990's. While they are generally meeting or exceeding requirements for supporting the ISS crew, lessons learned from years of on orbit and ground testing, together with new advances in technology state of the art, and the unique requirements for future manned missions prompt consideration of the next logical step to enhance these systems to increase performance, robustness, and reliability, and reduce on-orbit and logistical resource requirements. This paper discusses the current state of the art in ISS ECLS system technologies, and identifies possible areas for enhancement and improvement.
Technical Paper

Post-Flight Sampling and Loading Characterization of Trace Contaminant Control Subassembly Charcoal

2003-07-07
2003-01-2487
Trace chemical contaminants produced by equipment offgassing and human metabolic processes are removed from the atmosphere of the International Space Station's U.S. Segment by a trace contaminant control subassembly (TCCS). The TCCS employs a combination of physical adsorption, thermal catalytic oxidation, and chemical adsorption processes to accomplish its task. A large bed of granular activated charcoal is a primary component of the TCCS. The charcoal contained in this bed, known as the charcoal bed assembly (CBA), is expendable and must be replaced periodically. Pre-flight engineering analyses based upon TCCS performance testing results established a service life estimate of 1 year. After nearly 1 year of cumulative in-flight operations, the first CBA was returned for refurbishment. Charcoal samples were collected and analyzed for loading to determine the best estimate for the CBA's service life.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 1999-2000

2000-07-10
2000-01-2248
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies which provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S ECLS system activities over the past year, covering the period of time between May 1999 and April 2000. Assembly of the ISS has been delayed due to changes in element processing schedules. The 2A.1 logistics flight to ISS occurred in May 1999. The remaining Phase 2 elements have completed most of the element level testing and integration and are approaching final reviews for acceptance for flight. The Phase 3 regenerative ECLS designs have reached the Critical Design Review phase, while several of the Phase 3 elements have held Preliminary or Critical Design Reviews.
Technical Paper

Integrated Orbiter/International Space Station Air Quality Analysis for Post-Mission 2A.1 Risk Mitigation

2000-07-10
2000-01-2250
Crewmember ingress of the International Space Station (ISS) before that time accorded by the original ISS assembly sequence, and thus before the ISS capability to adequately control the levels of temperature, humidity, and carbon dioxide, poses significant impacts to ISS Environmental Control and Life Support (ECLS). Among the most significant considerations necessitated by early ingress are those associated with the capability of the Shuttle Transportation System (STS) Orbiter to control the aforementioned levels, the capability of the ISS to deliver the conditioned air among the ISS elements, and the definition and distribution of crewmember metabolic heat, carbon dioxide, and water vapor. Even under the assumption that all Orbiter and ISS elements would be operating as designed, condensation control and crewmember comfort were paramount issues preceding each of the ISS Missions 2A and 2A.1.
Technical Paper

Reduction of JT8D Powered Aircraft Noise By Engine Refanning

1974-02-01
740490
The purpose of the Refan Program is to establish the technical feasibility of substantially reducing the noise levels of existing JT8D powered aircraft. This would be accomplished by retrofitting the existing fleet with quieter refan engines and new acoustically treated nacelles. No major technical problems exist that preclude the development and installation of refanned engines on aircraft currently powered by the JT8D engine. The refan concept is technically feasible and provides calculated noise reductions of from 7 to 8 EPNdB for the B727-200 aircraft and from 10 to 12 EPNdB for the DC-9-32 aircraft at the FAR Part 36 measuring stations. These noise levels are lower than both the FAR Part 36 noise standards and the noise levels of the wide-body DC-10-10. Corresponding reductions in the 90 EPNdB footprint area are estimated to vary from about 70% for the DC-9 to about 80% for the B727.
X