Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

On-Road Testing to Characterize Speed-Following Behavior in Production Automated Vehicles

2024-04-09
2024-01-1963
A fully instrumented Tesla Model 3 was used to collect thousands of hours of real-world automated driving data, encompassing both Autopilot and Full Self-Driving modes. This comprehensive dataset included vehicle operational parameters from the data busses, capturing details such as powertrain performance, energy consumption, and the control of advanced driver assistance systems (ADAS). Additionally, interactions with the surrounding traffic were recorded using a perception kit developed in-house equipped with LIDAR and a 360-degree camera system. We collected the data as part of a larger program to assess energy-efficient driving behavior of production connected and automated vehicles. One important aspect of characterizing the test vehicle is predicting its car-following behavior. Using both uncontrolled on-road tests and dedicated tests with a lead car performing set speed maneuvers, we tuned conventional adaptive cruise control (ACC) equations to fit the vehicle’s behavior.
Technical Paper

Development of Mo-Free Ultra-High Strength 1.6-GPa Bolt with Delayed Fracture Resistance for Multi-Link Type Engine

2024-04-09
2024-01-2070
Mo-free 1.6-GPa bolt was developed for a Variable Compression Turbo (VC-Turbo) engine, which is environment friendly and improves fuel efficiency and output. Mo contributes to the improvement of delayed fracture resistance; therefore, the main objective is to achieve both high strength and delayed fracture resistance. Therefore, Si is added to the developed steel to achieve high strength and delayed fracture resistance. The delayed fracture tests were performed employing the Hc/He method. Hc is the limit of the diffusible hydrogen content without causing a delayed fracture under tightening, and He is the diffusible hydrogen content entering under a hydrogen-charging condition equivalent to the actual environment. The delayed fracture resistance is compared between the developed steel and the SCM440 utilized for 1.2-GPa class bolt as a representative of the current high-strength bolts.
Journal Article

Development of Resin Water Jacket Case for Traction Inverter Aiming to Downsizing and Light-Weighting

2022-03-29
2022-01-0719
The size and weight of the traction inverter needs to be reduced to ensure a sufficient cruising range of an electric vehicle. To this end, one approach involves changing materials of the inverter case from aluminum to resin. However, the resin in use of inverter case causes technical issues in terms of collision performance, electromagnetic compatibility (EMC), and cooling performance because of the difference in the material properties between the resin and the conventionally used aluminum. By solving the abovementioned issues, a resin water jacket case (hereinafter, resin water jacket) was successfully adopted with inverters designed for next-generation electric powertrain in mass production models for the first time. The resin-based structure had advantages to reduce the weight of the inverter case by ~35% and decrease the number of parts to ~3/5, compared to that for the conventional cases.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
Technical Paper

Development of JASO GLV-1 0W-8 Low Viscosity Engine Oil for Improving Fuel Efficiency considering Oil Consumption and Engine Wear Performance

2020-04-14
2020-01-1423
Engine oil with viscosity lower than 0W-16 has been needed for improving fuel efficiency in the Japanese market. However, lower viscosity oil generally has negative aspects with regard to oil consumption and anti-wear performance. The technical challenges are to reduce viscosity while keeping anti-wear performance and volatility level the same as 0W-20 oil. They have been solved in developing a new engine oil by focusing on the molybdenum dithiocarbamate friction modifier and base oil properties. This paper describes the new oil that supports good fuel efficiency while reliably maintaining other necessary performance attributes.
Technical Paper

Design Methodology for Motor Thermal Management in Vehicle Electrification

2019-12-19
2019-01-2368
In order to improve the accuracy of the coil temperature prediction, detailed fundamental experiments have been conducted on thermal resistances that are caused by the void air gap and contact surfaces. The thermal resistance of the coil around the air gap can be calculated by an air gap distance and air heat conductivity. Contact surface thermal resistance between the core and the housing was constant regardless of the press-fitting state in this experiment. Prediction accuracy of the coil temperature is improved by including the heat resistance characteristics that is obtained by the basic experiment to conjugate heat transfer analysis model.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Investigation of Transmission Warming Technologies at Various Ambient Conditions

2017-03-28
2017-01-0157
This work details two approaches for evaluating transmission warming technology: experimental dynamometer testing and development of a simplified transmission efficiency model to quantify effects under varied real world ambient and driving conditions. Two vehicles were used for this investigation: a 2013 Ford Taurus and a highly instrumented 2011 Ford Fusion (Taurus and Fusion). The Taurus included a production transmission warming system and was tested over hot and cold ambient temperatures with the transmission warming system enabled and disabled. A robot driver was used to minimize driver variability and increase repeatability. Additionally the instrumented Fusion was tested cold and with the transmission pre-heated prior to completing the test cycles. These data were used to develop a simplified thermally responsive transmission model to estimate effects of transmission warming in real world conditions.
Journal Article

Development of Low Viscosity API SN 0W-16 Fuel-Saving Engine Oil Considering Chain Wear Performance

2017-03-28
2017-01-0881
A low viscosity API SN 0W-16 engine oil was developed to achieve a 0.5% improvement in fuel efficiency over the current GF-5/API SN 0W-20 oil. Oil consumption and engine wear are the main roadblocks to the development of low viscosity engine oils. However, optimization of the base oil and additives successfully prevent oil consumption and wear. First, it was confirmed in engine tests that NOACK volatility is still an effective indicator of oil consumption even for a low viscosity grade like 0W-16. As a result of base oil volatility control, the newly developed oil achieves the same level of oil consumption as the current GF-5/API SN 0W-20 oil. Second, it was found that the base oil viscosity and molybdenum dithiocarbamate (MoDTC) had a significant effect on chain wear in rig testing that simulated silent chain wear. For the same base oil viscosity, the new oil maintains the same oil film thickness under high surface pressure.
Journal Article

Coupled 6DoF Motion and Aerodynamic Crosswind Simulation Incorporating Driver Model

2017-03-28
2017-01-1525
Because of rising demands to improve aerodynamic performance owing to its impact on vehicle dynamics, efforts were previously made to reduce aerodynamic lift and yawing moment based on steady-state measurements of aerodynamic forces. In recent years, increased research on dynamic aerodynamics has partially explained the impact of aerodynamic forces on vehicle dynamics. However, it is difficult to measure aerodynamic forces while a vehicle is in motion, and also analyzing the effect on vehicle dynamics requires measurement of vehicle behavior, amount of steering and other quantities noiselessly, as well as an explanation of the mutual influence with aerodynamic forces. Consequently, the related phenomena occurring in the real world are still not fully understood.
Technical Paper

Engine Friction and Wear Performances with Polyalkylene Glycol Engine Oils

2016-10-17
2016-01-2271
The application of polyalkylene glycol (PAG) as a base stock for engine oil formulation has been explored for substantial fuel economy gain over traditional formulations with mineral oils. Various PAG chemistries were explored depending on feed stock material used for manufacturing. All formulations except one have the same additive package. The friction performance of these oils was evaluated in a motored single cylinder engine with current production engine hardware in the temperature range 40°C-120°C and in the speed range of 500 RPM-2500 RPM. PAG formulations showed up to 50% friction reduction over GF-5 SAE 5W-20 oil depending on temperature, speed, and oil chemistry. Friction evaluation in a motored I-4 engine showed up to 11% friction reduction in the temperature range 40°C-100°C over GF-5 oil. The paper will share results on ASTM Sequence VID fuel economy, Sequence IVA wear, and Sequence VG sludge and varnish tests. Chassis roll fuel economy data will also be shared.
Technical Paper

Reciprocal Measurements of the Vehicle Transfer Function for Road Noise

2015-06-15
2015-01-2241
Road Noise is generated by the change of random displacement input inside the tire contact patch. Since the existing 3 or 6 directional electromagnetic shakers have a flat surface at the tire contact patch, these shakers cannot excite the vehicle in a manner representative of actual on-road road noise input. Therefore, this paper proposes a new experimental method to measure the road noise vehicle transfer function. This method is based on the reciprocity between the tire contact patch and the driver's ear location. The reaction force sensor of the tire contact patch is newly developed for the reciprocal loud speaker excitation at the passenger ear location. In addition, with this equipment, it is possible to extract the dominant structural mode shapes creating high sound pressure in the automotive interior acoustic field. This method is referred to as experimental structure mode participation to the noise of the acoustic field in the vibro-acoustic coupling analysis.
Journal Article

Buckling Analysis of Uncertain Structures Using Imprecise Probability

2015-04-14
2015-01-0485
In order to ensure the safety of a structure, adequate strength for structural elements must be provided. Moreover, catastrophic deformations such as buckling must be prevented. Using the linear finite element method, deterministic buckling analysis is completed in two main steps. First, a static analysis is performed using an arbitrary ordinate applied loading pattern. Using the obtained element axial forces, the geometric stiffness of the structure is assembled. Second, an eigenvalue problem is performed between structure's elastic and geometric stiffness matrices, yielding the structure's critical buckling loads. However, these deterministic approaches do not consider uncertainty the structure's material and geometric properties. In this work, a new method for finite element based buckling analysis of a structure with uncertainty is developed. An imprecise probability formulation is used to quantify the uncertainty present in the mechanical characteristics of the structure.
Journal Article

Recent Developments in X-ray Diagnostics for Cavitation

2015-04-14
2015-01-0918
Cavitation plays an important role in fuel injection systems. It alters the nozzle's internal flow structure and discharge coefficient, and also contributes to injector wear. Quantitatively measuring and mapping the cavitation vapor distribution in a fuel injector is difficult, as cavitation occurs on very short time and length scales. Optical measurements of transparent model nozzles can indicate the morphology of large-scale cavitation, but are generally limited by the substantial amount of scattering that occurs between vapor and liquid phases. These limitations can be overcome with x-ray diagnostics, as x-rays refract, scatter and absorb much more weakly from phase interfaces. Here, we present an overview of some recent developments in quantitative x-ray diagnostics for cavitating flows. Measurements were conducted at the Advanced Photon Source at Argonne National Laboratory, using a submerged plastic test nozzle.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
Technical Paper

Independent Control of Steering Force and Wheel Angles to Improve Straight Line Stability

2014-04-01
2014-01-0065
This paper describes a control method to improve straight-line stability without sacrificing natural steering feel, utilizing a newly developed steering system controlling the steering force and the wheel angle independently. It cancels drifting by a road cant and suppresses the yaw angle induced by road surface irregularities or a side wind. Therefore drivers can keep the car straight with such a little steering input adjustment, thus reducing the driver's workload greatly. In this control method, a camera mounted behind the windshield recognizes the forward lane and calculate the discrepancy between the vehicle direction and the driving lane. This method has been applied to the test car, and the reduction of the driver's workload was confirmed. This paper presents an outline of the method and describes its advantages.
Technical Paper

Development of Fuel Consumption Test Method Standards for Heavy-Duty Commercial Vehicles in China

2011-09-13
2011-01-2292
To restrain the environmental and energy problems caused by oil consumption and improve fuel economy of heavy-duty commercial vehicles, China started developing relevant standards from 2008. This paper introduces the background and development of China's national standard “Fuel consumption test methods for heavy-duty commercial vehicles”, and mainly describes the test method schemes, driving cycle and weighting factors for calculating average fuel consumption of various vehicle categories. The standard applies to heavy-duty vehicles with the maximum design gross mass greater than 3500 kg, including semi-trailer tractors, common trucks, dump trucks, city buses and common buses. The standard adopts the C-WTVC driving cycle which is adjusted on the basis of the World Transient Vehicle Cycle[1, 2] and specifies weighting factors of urban, rural and motorway segments for different vehicle categories.
X