Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Powering Tomorrow's Light, Medium, and Heavy-Duty Vehicles: A Comprehensive Techno-Economic Examination of Emerging Powertrain Technologies

2024-04-09
2024-01-2446
This paper presents a comprehensive analysis of emerging powertrain technologies for a wide spectrum of vehicles, ranging from light-duty passenger vehicles to medium and heavy-duty trucks. The study focuses on the anticipated evolution of these technologies over the coming decades, assessing their potential benefits and impact on sustainability. The analysis encompasses simulations across a wide range of vehicle classes, including compact, midsize, small SUVs, midsize SUVs, and pickups, as well as various truck types, such as class 4 step vans, class 6 box trucks, and class 8 regional and long-haul trucks. It evaluates key performance metrics, including fuel consumption, estimated purchase price, and total cost of ownership, for these vehicles equipped with advanced powertrain technologies such as mild hybrid, full hybrid, plug-in hybrid, battery electric, and fuel cell powertrains.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Modeling Pre-Chamber Assisted Efficient Combustion in an Argon Power Cycle Engine

2024-04-09
2024-01-2690
The Argon Power Cycle (APC) is a novel zero-emission closed-loop argon recirculating engine cycle which has been developed by Noble Thermodynamics Systems, Inc. It provides a significant gain in indicated thermal efficiency of the reciprocating engine by breathing oxygen and argon rather than air. The use of argon, a monatomic gas, greatly increases the specific heat ratio of the working fluid, resulting in a significantly higher ideal Otto cycle efficiency. This technology delivers a substantial improvement in reciprocating engine performance, maximizing the energy conversion of fuel into useful work. Combined Heat and Power (CHP) operating under the APC represents a promising solution to realize a net-zero-carbon future, providing the thermal energy that hard-to-electrify manufacturing processes need while at the same time delivering clean, dispatchable, and efficient power.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET

2024-04-09
2024-01-2830
To properly compare and contrast the environmental performance of one vehicle technology against another, it is necessary to consider their production, operation, and end-of-life fates. Since 1995, Argonne’s GREET® life cycle analysis model (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) has been annually updated to model and refine the latest developments in fuels and materials production, as well as vehicle operational and composition characteristics. Updated cradle-to-grave life cycle analysis results from the model’s latest release are described for a wide variety of fuel and powertrain options for U.S. light-duty and medium/heavy-duty vehicles. Light-duty vehicles include a passenger car, sports utility vehicle (SUV), and pick-up truck, while medium/heavy-duty vehicles include a Class 6 pickup-and-delivery truck, Class 8 day-cab (regional) truck, and Class 8 sleeper-cab (long-haul) truck.
Technical Paper

Residual Gas Fraction Measurement and Estimation of the CFR Octane Rating Engine Operating Under HCCI Conditions

2023-09-29
2023-32-0010
The autoignition chemistry of fuels depends on the pressure, temperature, and time history that the fuel-air mixture experiences during the compression stroke. While piezoelectric pressure transducers offer excellent means of pressure measurement, temperature measurements are not commonly available and must be estimated. Even if the pressure and temperature at the intake and exhaust ports are measured, the residual gas fraction (RGF) within the combustion chamber requires estimation and greatly impacts the temperature of the fresh charge at intake valve closing. This work replaced the standard D1 Detonation Pickup of a CFR engine with a rapid sampling valve to allow for in-cylinder gas sampling at defined crank-angle times during the compression stroke. The extracted cylinder contents were captured in an emissions sample bag and its composition was subsequently analyzed in an AVL i60 emissions bench.
Technical Paper

Effects of Engine Speed on Prechamber-Assisted Combustion

2023-08-28
2023-24-0020
Lean combustion technologies show promise for improving engine efficiency and reducing emissions. Among these technologies, prechamber-assisted combustion (PCC) is established as a reliable option for achieving lean or ultra-lean combustion. In this study, the effect of engine speed on PCC was investigated in a naturally aspirated heavy-duty optical engine: a comparison has been made between analytical performances and optical flame behavior. Bottom view natural flame luminosity (NFL) imaging was used to observe the combustion process. The prechamber was fueled with methane, while the main chamber was fueled with methanol. The engine speed was varied at 1000, 1100, and 1200 revolutions per minute (rpm). The combustion in the prechamber is not affected by changes in engine speed. However, the heat release rate (HRR) in the main chamber changed from two distinct stages with a faster first stage to more gradual and merged stages as the engine speed increased.
Technical Paper

Computational Assessment of Ammonia as a Fuel for Light-Duty SI Engines

2023-08-28
2023-24-0013
To understand key practical aspects of ammonia as a fuel for internal combustion engines, three-dimensional computational fluid dynamics (CFD) simulations were performed using CONVERGETM. A light-duty single-cylinder research engine with a geometrical compression ratio of 11.5 and a conventional pentroof combustion chamber was experimentally operated at stoichiometry. The fumigated ammonia was introduced at the intake plenum. Upon model validation, additional sensitivity analysis was performed. The combustion was modeled using a detailed chemistry solver (SAGE), and the ammonia oxidation was computed from a 38-specie and 262-reaction chemical reaction mechanism. Three different piston shapes were assessed, and it was found that the near-spark flow field associated with the piston design in combination with the tumble motion promotes faster combustion and yields enhanced engine performance.
Technical Paper

Transmission Shifting Analysis and Model Validation for Medium Duty Vehicles

2023-04-11
2023-01-0196
Over the past couple of years, Argonne National Laboratory has tested, analyzed, and validated automobile models for the light duty vehicle class, including several types of powertrains including conventional, hybrid electric, plug-in hybrid electric and battery electric vehicles. Argonne’s previous works focused on the light duty vehicle models, but no work has been done on medium and heavy-duty vehicles. This study focuses on the validation of shifting control in advanced automatic transmission technologies for medium duty vehicles by using Argonne’s model-based high-fidelity, forward-looking, vehicle simulation tool, Autonomie. Different medium duty vehicles, from Argonne’s own fleet, including the Ram 2500, Ford F-250 and Ford F-350, were tested with the equipment for OBD (on-board diagnostics) signal data record. For the medium duty vehicles, a workflow process was used to import test data.
Technical Paper

Optimizing Spark Assisted GCI Combustion with the Compression Ratio and Internal Exhaust Gas Recirculation (I-EGR) Strategies

2023-04-11
2023-01-0226
The combustion instability at low loads is one of the key technology risks that needs to be addressed with the development of gasoline compression ignition (GCI) engine. The misfires and partial burns due to combustion instability leads to excessive hydrocarbon (HC) and carbon monoxide (CO) emissions. This study aims to improve the combustion robustness and reduce the emissions at low loads. The GCI engine used in this study has unique hardware features of a spark plug placed adjacent to the centrally mounted gasoline direct injector and a shallow pent roof combustion chamber coupled with a bowl in piston geometry. The engine experiments were performed in a single cylinder GCI engine at 3 bar indicated mean effective pressure (IMEP) and 1500 rpm for certified gasoline with research octane number (RON) = 91.
Technical Paper

Experimental Investigations of Methane-Hydrogen Blended Combustion in a Heavy-Duty Optical Diesel Engine Converted to Spark Ignition Operation

2023-04-11
2023-01-0289
The global need for de-carbonization and stringent emission regulations are pushing the current engine research toward alternative fuels. Previous studies have shown that the uHC, CO, and CO2 emissions are greatly reduced and brake thermal efficiency increases with an increase in hydrogen concentration in methane-hydrogen blends for the richer mixture compositions. However, the combustion suffers from high NOx emissions. While these trends are well established, there is limited information on a detailed optical study on the effect of air-excess ratio for different methane-hydrogen mixtures. In the present study, experimental investigations of different methane-hydrogen blends between 0 and 100% hydrogen concentration by volume for the air-excess ratio of 1, 1.4, 1.8, and 2.2 were conducted in a heavy-duty optical diesel engine converted to spark-ignition operation. The engine was equipped with a flat-shaped optical piston to allow bottom-view imaging of the combustion chamber.
Technical Paper

Preheated Liquid Fuel Injection Concept for Lean Pre-chamber Combustion

2023-04-11
2023-01-0259
The pre-chamber combustion (PCC) concept is a proven lean or diluted combustion technique for internal combustion engines with benefits in engine efficiency and reduced NOx emissions. The engine lean operation limit can be extended by supplying auxiliary fuel into the pre-chamber and thereby, achieving mixture stratification inside the pre-chamber over the main chamber. Introducing liquid fuels into the pre-chambers is challenging owing to the small form factor of the pre-chamber. With a conventional injector, the fuel penetrates in liquid form and impinges on the pre-chamber walls, which leads to increased unburned hydrocarbon emissions from the pre-chamber. In this study, a prototype liquid fuel injector is introduced which preheats the fuel within a heated chamber fitted with an electrical heating element before injecting an effervescently atomized spray into the pre-chamber.
Journal Article

Zero Dimension Heat Release Modeling for Gasoline, Ethanol, Isobutanol and Diisobutylene Operating in Compression Ignition with Varying Injection Strategies

2023-04-11
2023-01-0188
Gasoline compression ignition shows great potential in reducing NOx and soot emissions with competitive thermal efficiency by leveraging the properties of gasoline fuels and the high compression ratio of compression ignition engines operating air-dilute. Meanwhile, its control becomes challenging due to not only the properties of different gasoline-type fuels but also the impacts of injection strategies on the in-cylinder reactivity. As such, a computationally efficient zero-dimension combustion model can significantly reduce the cost of control development. In this study, a previously developed zero-dimension combustion model for gasoline compression ignition was extended to multiple gasoline-type fuel blends and a port fuel injection/direct fuel injection strategy. Tests were conducted on a 12.4-liter heavy-duty engine with five fuel blends.
Journal Article

Development of a Supercharged Octane Number and a Supercharged Octane Index

2023-04-11
2023-01-0251
Gasoline knock resistance is characterized by the Research and Motor Octane Number (RON and MON), which are rated on the CFR octane rating engine at naturally aspirated conditions. However, modern automotive downsized boosted spark ignition (SI) engines generally operate at higher cylinder pressures and lower temperatures relative to the RON and MON tests. Using the naturally aspirated RON and MON ratings, the octane index (OI) characterizes the knock resistance of gasolines under boosted operation by linearly extrapolating into boosted “beyond RON” conditions via RON, MON, and a linear regression K factor. Using OI solely based on naturally aspirated RON and MON tests to extrapolate into boosted conditions can lead to significant errors in predicting boosted knock resistance between gasolines due to non-linear changes in autoignition and knocking characteristics with increasing pressure conditions.
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Technical Paper

Comparing Unburned Fuel Emission from a Pre-chamber Engine Operating on Alcohol Fuels using FID and FTIR Analyzers

2022-08-30
2022-01-1094
Typical automotive emission testing systems usually employ Flame Ionization Detection (FID) analyzers to measure unburned fuel species in the exhaust, but the technique is not suitable for engines operating on alcohol fuels. The FID method is not sensitive to measuring unburned alcohol fuels due to the presence of oxygen bonds in the fuel molecule. Other techniques, such as Fourier Transform Infrared (FTIR), can provide accurate unburned fuel measurements with alcohol fuel. However, these techniques are expensive and are less accessible compared to FID analyzers. In this study, the unburned fuel emissions from the engine exhaust were measured simultaneously with FID and FTIR analyzers, with the engine operating on pure alcohols, which are methanol, ethanol, and n-butanol. While most previous work focuses on stoichiometric air-fuel mixtures, a wide range of lean operating conditions between global-λ 1.6 to 2.8 will be tested in this study.
Technical Paper

The Impact of Fuel Injection Strategies and Compression Ratio on Combustion and Performance of a Heavy-Duty Gasoline Compression Ignition Engine

2022-08-30
2022-01-1055
Gasoline compression ignition using a single gasoline-type fuel has been shown as a method to achieve low-temperature combustion with low engine-out NOx and soot emissions and high indicated thermal efficiency. However, key technical barriers to achieving low temperature combustion on multi-cylinder engines include the air handling system (limited amount of exhaust gas recirculation) as well as mechanical engine limitations (e.g. peak pressure rise rate). In light of these limitations, high temperature combustion with reduced amounts of exhaust gas recirculation appears more practical. Furthermore, for high temperature Gasoline compression ignition, an effective aftertreatment system allows high thermal efficiency with low tailpipe-out emissions. In this work, experimental testing was conducted on a 12.4 L multi-cylinder heavy-duty diesel engine operating with high temperature gasoline compression ignition combustion using EEE gasoline.
Technical Paper

The Effects of Piston Shape in a Narrow-Throat Pre-Chamber Engine

2022-08-30
2022-01-1059
The current work utilizes computational fluid dynamics (CFD) simulations to assess the effects of different piston geometries in an active-type pre-chamber combustion engine fueled with methane. Previous works identified that the interaction of the jets with the main chamber flow and piston wall are key aspects for the local turbulent flame speed and overall burning duration. The combustion process is simulated with the G-equation model for flame propagation combined with the MZ-WSR model to determine the post-flame composition and to predict possible auto-ignition of the reactant mixture. Four setups were considered: two bowl-shaped and one flat piston, and one additional case of the flat piston with jets at wider jet angles to the cylinder axis. The results show that premature jet-wall interaction impacts the main chamber pressure build-up, turbulence, and burn rate.
Technical Paper

Numerical Investigation of the Effects of Piston Design and Injection Strategy on Passive Pre-chamber Enrichment

2022-08-30
2022-01-1041
The pre-chamber combustion can extend the lean limit of internal combustion engines (ICE) and hence increase their overall efficiency. Compared to active pre-chambers equipped with an auxiliary fuel supply system, passive pre-chambers have lower manufacturing costs and require minimal or no design modifications to the conventional spark plug engines. The major challenge of the passive pre-chamber is to extend the lean limit as much as the active pre-chamber. Computational fluid dynamics (CFD) simulations were conducted on a light-duty single-cylinder engine geometry fitted with a passive pre-chamber and using iso-octane as fuel to investigate and optimize the passive pre-chamber fuel enrichment through the pre-chamber nozzles. The non-reacting flow simulations were performed from the intake valve open (IVO) to spark timing.
Technical Paper

Gas Dynamics of Spark-Ignited Pre-Chamber Assisted Engine: PIV Study

2022-08-30
2022-01-1047
In recent years lean-burn technologies have acquired center stage in engine research due to stringent emission norms. Among such technologies, pre-chamber assisted combustion (PCC) has gained much attention for its ability to allow ultra-lean engine operation (λ > 2). The spark-ignited pre-chambers engines allow such lean operation by inducing a strong charge stratification, enhancing turbulence generation, and multipoint ignition. Adding a pre-chamber igniter to the engine alters the in-cylinder flow fields as mass is exchanged between the pre-chamber and the main chamber. This study reports the main chamber flow fields of methane fuelled heavy-duty optical engine fitted with a narrow throat active prechamber. Particle image velocimetry (PIV) at 10 Hz is performed from the side view using TiO2 particle seeding.
X