Refine Your Search

Topic

Search Results

Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Technical Paper

Exploring Class 8 Long-Haul Truck Electrification: Key Technology Evaluation and Potential Challenges

2024-04-09
2024-01-2812
The phenomena of global warming and climate change are encouraging more and more countries, local communities, and companies to establish carbon neutrality targets, which has very significant implications for the US trucking industry. Truck electrification helps fleets to achieve zero tailpipe emissions and macro-scale decarbonization while allowing continued business growth in response to the rapid expansion of e-commerce and shipping related to increased globalization. This paper presents an analysis of Class 8 long-haul truck electrification using a commercial vehicle electrification evaluation tool and Fleet DNA drive data. The study provides new insight into the impacts of streamlined chassis, battery energy density, and superfast charging on battery capacity needs as well as implications for payload, energy consumption, and greenhouse gas emissions for electric long-haul trucks. The study also identifies a pathway for achieving optimal long-haul truck electrification.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Journal Article

Achieving Diesel Powertrain Ownership Parity in Battery Electric Heavy Duty Commercial Vehicles Using a Rapid Recurrent Recharging Architecture

2022-03-29
2022-01-0751
Battery electric vehicles (BEV) in heavy duty (HD) commercial freight transport face challenging technoeconomic barriers to adoption. Specifically, beyond safety and compliance, fleet and operational logistics require both high up-time and parity with diesel system productivity/Total Cost of Ownership (TCO) to enable strong adoption of electrified powertrains. At present, relatively high energy storage prices coupled with the increased weight of BEV systems limit the practicality of HD commercial freight transport to shorter range applications, where smaller batteries will suffice for the mission energy requirements (single operational shift). This paper presents an approach to extend the feasibility of BEV HD trucking for a broad range of applications.
Technical Paper

Low Density and Temperature Tolerant Alloys for Automotive Applications

2017-03-28
2017-01-1666
Aluminum alloys containing cerium have excellent castability and retain a substantial fraction of their room temperature strength at temperatures of 200°C and above. High temperature strength is maintained through a thermodynamically trapped, high surface energy intermetallic. Dynamic load partitioning between the aluminum and the intermetallic increases mechanical response. Complex castings have been produced in both permanent mold and sand castings. This versatile alloy system, using an abundant and inexpensive co-product of rare earth mining, is suitable for parts that need to maintain good properties when exposed to temperatures between 200 and 315°C.
Journal Article

Vehicle Efficiency and Tractive Work: Rate of Change for the Past Decade and Accelerated Progress Required for U.S. Fuel Economy and CO2 Regulations

2016-04-05
2016-01-0909
A major driving force for change in light-duty vehicle design and technology is the National Highway Traffic Safety Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) joint final rules concerning Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emissions for model years 2017 (MY17) through 2025 (MY25) passenger cars and light trucks. The chief goal of this current study is to compare the already rapid pace of fuel economy improvement and technological change over the previous decade to the required rate of change to meet regulations over the next decade. EPA and NHTSA comparisons of the model year 2005 (MY05) US light-duty vehicle fleet to the model year 2015 (MY15) fleet shows improved fuel economy (FE) of approximately 26% using the same FE estimating method mandated for CAFE regulations. Future predictions by EPA and NHTSA concerning ensemble fleet fuel economy are examined as an indicator of required vehicle rate-of-change.
Technical Paper

SI Engine Trends: A Historical Analysis with Future Projections

2015-04-14
2015-01-0972
It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number.
Technical Paper

Experimental Evaluation of a 4-cc Glow-Ignition Single-Cylinder Two-Stroke Engine

2014-04-01
2014-01-1673
The performance of a 4cc two-stroke single cylinder glow plug engine was assessed at wide open throttle for speeds ranging from 2000 to 7000RPM. The engine performance was mapped for the stock aluminum head and one composed of titanium, which was printed using additive manufacturing. The engine was mounted to a motoring dynamometer and the maximum torque was determined by adjusting the fuel flow. Maximum torque occurred around 3000 to 3500RPM and tended to be higher when using the aluminum head. At slower speeds, the titanium head produced slightly higher torque. For each test condition, maximum torque occurred at leaner conditions for the titanium head compared to the stock aluminum one. Higher efficiencies were observed with the aluminum head for speeds greater than 3000RPM, but the titanium heads provided better efficiency at the lower speed points.
Technical Paper

Modeling the Impact of Road Grade and Curvature on Truck Driving for Vehicle Simulation

2014-04-01
2014-01-0879
Driver is a key component in vehicle simulation. An ideal driver model simulates driving patterns a human driver may perform to negotiate road profiles. There are simulation packages having the capability to simulate driver behavior. However, it is rarely documented how they work with road profiles. This paper proposes a new truck driver model for vehicle simulation to imitate actual driving behavior in negotiating road grade and curvature. The proposed model is developed based upon Gipps' car-following model. Road grade and curvature were not considered in the original Gipps' model although it is based directly on driver behavior and expectancy for vehicles in a stream of traffic. New parameters are introduced to capture drivers' choice of desired speeds that they intend to use in order to negotiating road grade and curvature simultaneously. With the new parameters, the proposed model can emulate behaviors like uphill preparation for different truck drivers.
Technical Paper

The Electric Drive Advanced Battery (EDAB) Project: Development and Utilization of an On-Road Energy Storage System Testbed

2013-04-08
2013-01-1533
As energy storage system (ESS) technology advances, vehicle testing in both laboratory and on-road settings is needed to characterize the performance of state-of-the-art technology and also identify areas for future improvement. The Idaho National Laboratory (INL), through its support of the U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA), is collaborating with ECOtality North America and Oak Ridge National Laboratory (ORNL) to conduct on-road testing of advanced ESSs for the Electric Drive Advanced Battery (EDAB) project. The project objective is to test a variety of advanced ESSs that are close to commercialization in a controlled environment that simulates usage within the intended application with the variability of on-road driving to quantify the ESS capabilities, limitations, and performance fade over cycling of the ESS.
Technical Paper

A Comparative Life Cycle Assessment of Magnesium Front End Autoparts: A Revision to 2010-01-0275

2012-12-31
2012-01-2325
The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China, and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobiles. The primary goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North American-built 2007 GM-Cadillac CTS using the current steel structure as a baseline. An aluminium front end is also considered as an alternate light structure scenario. A “cradle-to-grave” LCA is conducted by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase, and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 [1] and ISO 14044:2006 [2].
Journal Article

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies for Medium- and Heavy-Duty Trucks Using Characteristic Drive Cycle Data

2012-04-16
2012-01-0361
Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest.
Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Journal Article

Friction Stir Spot Welding for Structural Aluminum Sheets

2009-04-20
2009-01-0023
The Friction Stir Spot Welding (FSSW) process is a derivative of the friction stir welding (FSW) process, without lateral movement of the tool during the welding process. It has been applied in the production of aluminum joining for various Mazda and Toyota vehicles. Most of the applications and published studies were concentrated in aluminum sheet in the range of 1.0 to 1.5 mm, suitable for non-structural automotive closure applications. The objective of this study is to study the feasibility of FSSW process for automotive structural aluminum joining, up to 3 mm in thickness, for potentially replacement of self-piercing rivets (SPR) process. Joining thicker aluminum with FSSW tooling with a typical smooth concave shoulder and threaded probing pin, requires long process time, which would not be appropriate in mass-production automotive body construction. In this paper, an innovative FSSW tool with grooved shoulder was developed.
Technical Paper

A Systems Approach to Life Cycle Truck Cost Estimation

2006-10-31
2006-01-3562
A systems-level modeling framework developed to estimate the life cycle cost of medium- and heavy-duty trucks is discussed in this paper. Costs are estimated at a resolution of five major subsystems and 30+ subsystems, each representing a specific manufacturing technology. Interrelationships among various subsystems affecting cost are accounted for. Results of a specific Class 8 truck are finally discussed to demonstrate the modeling framework's capability, including the analysis of cost-effectiveness of some of the competing alternative system design options being considered by the industry today.
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 5754 Sheets

2005-04-11
2005-01-1256
Microstructures and failure mechanisms of spot friction welds (SFW) in aluminum 5754 lap-shear specimens were investigated. In order to study the effect of tool geometry on the joint strength of spot friction welds, a concave tool and a flat tool were used. In order to understand the effect of tool penetration depth on the joint strength, spot friction welds were prepared with two different penetration depths for each tool. The results indicated that the concave tool produced slightly higher joint strength than the flat tool. The joint strength did not change for the two depths for the flat tool whereas the joint strength slightly increases as the penetration depth increases for the concave tool. The experimental results show that the failure mechanism is necking and shearing for the spot friction welds made by both tools. The failure was initiated and fractured through the upper sheet under the shoulder indentation near the crack tip.
Technical Paper

Particulate Matter and Aldehyde Emissions from Idling Heavy-Duty Diesel Trucks

2003-03-03
2003-01-0289
As part of a multi-agency study concerning emissions and fuel consumption from heavy-duty diesel truck idling, Oak Ridge National Laboratory personnel measured CO, HC, NOx, CO2, O2, particulate matter (PM), aldehyde and ketone emissions from truck idle exhaust. Two methods of quantifying PM were employed: conventional filters and a Tapered Element Oscillating Microbalance (TEOM). A partial flow micro-dilution tunnel was used to dilute the sampled exhaust to make the PM and aldehyde measurements. The work was performed at the U.S. Army's Aberdeen Test Center's (ATC) climate controlled chamber. ATC performed 37 tests on five class-8 trucks (model years ranging from 1992 to 2001). One was equipped with an 11 hp diesel auxiliary power unit (APU), and another with a diesel direct-fired heater (DFH). The APU powers electrical accessories, heating, and air conditioning, whereas a DFH heats the cab in cold weather. Both devices offer an alternative to extended truck-engine idling.
Technical Paper

A New Manufacturing Technology for Induction Machine Copper Rotors

2002-06-03
2002-01-1888
The benefits of energy and operational cost savings from using copper rotors are well recognized. The main barrier to die casting copper rotors is short mold life. This paper introduces a new approach for manufacturing copper-bar rotors. Either copper, aluminum, or their alloys can be used for the end rings. Both solid-core and laminated-core rotors were built. High quality joints of aluminum to copper were produced and evaluated. This technology can also be used for manufacturing aluminum bar rotors with aluminum end rings. Further investigation is needed to study the lifetime reliability of the joint. The improvement of manufacturing fixture through prototype test is also required.
Technical Paper

High-Volume, Low-Cost Precursors for Carbon Fiber Production

2002-06-03
2002-01-1907
Carbon fiber composite use in automobiles and light trucks could dramatically reduce energy use and engine-out emissions. However, worldwide capacity of 28,000 tonnes per year of carbon fiber from polyacrylonitrile (PAN) and petroleum pitch could support limited automotive use. Production of high-volume, industrial-grade fiber from renewable and recycled polymers (lignin, recycled plastics, regenerated cellulosics) could meet automotive demand. Profiles of material volumes, carbon content, and melting points indicate several attractive candidates for production melt-spun carbon fiber feedstocks. Effects on the carbon fiber production cycle and its integration into automotive production are discussed.
X