Refine Your Search

Topic

Search Results

Journal Article

Development of a Non-Linear Clutch Damper Experiment Exhibiting Transient Dynamics

2015-06-15
2015-01-2189
Many powertrain structural sub-systems are often tested under steady state conditions on a dynamometer or in a full vehicle. This process (while necessary) is costly and time intensive, especially when evaluating the effect of component properties on transient phenomena, such as driveline clunk. This paper proposes a laboratory experiment that provides the following: 1) a bench experiment that demonstrates transient behavior of a non-linear clutch damper under non-rotating conditions, 2) a process to efficiently evaluate multiple non-linear clutch dampers, and 3) generates benchmark time domain data for validation of non-linear driveline simulation codes. The design of this experiment is based on a previous experimental work on clunk. A commercially available non-linear clutch damper is selected and the experiment is sized accordingly. The stiffness and hysteresis properties of the clutch damper are assumed from the measured quasi-static torque curve provided by the manufacturer.
Technical Paper

Effect of Flow on Helmholtz Resonator Acoustics: A Three-Dimensional Computational Study vs. Experiments

2011-05-17
2011-01-1521
The effectiveness of the Helmholtz resonator as a narrow band acoustic attenuator, particularly at low frequencies, makes it a highly desirable component in a wide variety of applications, including engine breathing systems. The present study investigates the influence of mean flow grazing over the neck of such a configuration on its acoustic performance both computationally and experimentally. Three-dimensional unsteady, turbulent, and compressible Navier-Stokes equations are solved by using the Pressure-Implicit-Splitting-of-Operators algorithm in STAR-CD to determine the time-dependent flow field. The introduction of mean flow in the main duct is shown to reduce the peak transmission loss and shift the fundamental resonance frequency to a higher value.
Journal Article

Model Based Engine Control Development and Hardware-in-the-Loop Testing for the EcoCAR Advanced Vehicle Competition

2011-04-12
2011-01-1297
When developing a new engine control strategy, some of the important issues are cost, resource minimization, and quality improvement. This paper outlines how a model based approach was used to develop an engine control strategy for an Extended Range Electric Vehicle (EREV). The outlined approach allowed the development team to minimize the required number of experiments and to complete much of the control development and calibration before implementing the control strategy in the vehicle. It will be shown how models of different fidelity, from map-based models, to mean value models, to 1-D gas dynamics models were generated and used to develop the engine control system. The application of real time capable models for Hardware-in-the-Loop testing will also be shown.
Journal Article

Ignition Delay Correlation for Predicting Autoignition of a Toluene Reference Fuel Blend in Spark Ignition Engines

2011-04-12
2011-01-0338
An ignition delay correlation was developed for a toluene reference fuel (TRF) blend that is representative of automotive gasoline fuels exhibiting two-stage ignition. Ignition delay times for the autoignition of a TRF 91 blend with an antiknock index of 91 were predicted through extensive chemical kinetic modeling in CHEMKIN for a constant volume reactor. The development of the correlation involved determining nonlinear least squares curve fits for these ignition delay predictions corresponding to different inlet pressures and temperatures, a number of fuel-air equivalence ratios, and a range of exhaust gas recirculation (EGR) rates. In addition to NO control, EGR is increasingly being utilized for managing combustion phasing in spark ignition (SI) engines to mitigate knock. Therefore, along with other operating parameters, the effects of EGR on autoignition have been incorporated in the correlation to address the need for predicting ignition delay in SI engines operating with EGR.
Journal Article

Thermal Mapping of an Automotive Rear Drive Axle

2011-04-12
2011-01-0718
In recent years, there has been a sustained effort by the automotive OEMs and suppliers to improve the vehicle driveline efficiency. This has been in response to customer demands for greater vehicle fuel economy and increasingly stringent government regulations. The automotive rear axle is one of the major sources of power loss in the driveline, and hence represents an area where power loss improvements can have a significant impact on overall vehicle fuel economy. Both the friction induced mechanical losses and the spin losses vary significantly with the operating temperature of the lubricant. Also, the preloads in the bearings can vary due to temperature fluctuations. The temperatures of the lubricant, the gear tooth contacting surfaces, and the bearing contact surfaces are critical to the overall axle performance in terms of power losses, fatigue life, and wear.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Technical Paper

Simulation Results from a Model of a Tractor Trailer Vehicle Equipped with Roll Stability Control

2010-04-12
2010-01-0098
In 2007, a software model of a Roll Stability Control (RSC) system was developed based on test data for a Volvo tractor at NHTSA's Vehicle Research and Test Center (VRTC). This model was designed to simulate the RSC performance of a commercially available Electronic Stability Control (ESC) system. The RSC model was developed in Simulink and integrated with the available braking model (TruckSim) for the truck. The Simulink models were run in parallel with the vehicle dynamics model of a truck in TruckSim. The complete vehicle model including the RSC system model is used to simulate the behavior of the actual truck and determine the capability of the RSC system in preventing rollovers under different conditions. Several simulations were performed to study the behavior of the model developed and to compare its performance with that of an actual test vehicle equipped with RSC.
Technical Paper

Development of a Method to Assess Vehicle Stability and Controllability in Open and Closed-Loop Maneuvers

2010-04-12
2010-01-0111
This paper describes a method to evaluate vehicle stability and controllability when the vehicle operates in the nonlinear range of lateral dynamics. The method is applied to open-loop steering maneuvers as well as closed-loop path-following maneuvers. Although path-following maneuvers are more representative of real world driving intent, they are usually considered inappropriate for objective assessment because of repeatability and accuracy issues. The automated test driver (ATD) can perform path-following maneuvers accurately and with good repeatability. This paper discusses the usefulness of application of the automated test drivers and path-following maneuvers. The dynamic mode of instability is not directly obtained from measurable outputs such as yawrate and lateral acceleration as in open-loop maneuvers. A few metrics are defined to quantify deviation from desired or ideal behavior in terms of observed “unexpected” lateral force and moment.
Technical Paper

Evaluation of the Ignition Hazard Posed by Onboard Refueling Vapor Recovery Canisters

2001-03-05
2001-01-0731
ORVR (Onboard Refueling Vapor Recovery) canisters trap vapors during normal operations of a vehicle's engine, and during refueling. This study evaluates the relative risks involved should a canister rupture in a crash. A canister impactor was developed to simulate real-world impacts and to evaluate the canisters' rupture characteristics. Numerous performance aspects of canisters were evaluated: the energy required to rupture a canister; the spread of carbon particles following rupture; the ease of ignition of vapor-laden particles; the vapor concentration in the area of ruptured, vapor-laden canisters; and the potential of crashes to rupture and ignite canisters. Results from these five items were combined into a risk analysis.
Technical Paper

NVH Research Facilities at The Ohio State University: Existing Facilities and Envisioned Enhancements

1997-05-20
971899
The automotive NVH research infrastructure at Ohio State includes the Center for Automotive Research, the Acoustics and Dynamics Laboratory, and the Gear Dynamics and Gear Noise Research Laboratory. This paper describes the facilities of these laboratories. Two unique existing facilities, namely the transmission error measurement of gears and a laboratory for the experimental measurement of engine breathing systems, will be emphasized. Also covered are the enhancements that are envisioned through a recent grant from the Ohio Board of Regents.
Technical Paper

Wave Propagation in Catalytic Converters: A Preliminary Investigation

1997-05-20
971873
The present study investigates the wave propagation and attenuation in catalytic converters. The relationships for wave propagation in a catalytic monolith are derived first and then coupled to the wave propagation in tapered ducts. Analytical predictions are compared with experimental results to validate the theory.
Technical Paper

Dynamic Analysis of Layshaft Gears in Automotive Transmission

1997-05-20
971964
In this paper, we will present parametric results of performing dynamic analysis of layshaft gear trains typically used in automotive transmissions with emphasis on the vibratory response due to transmission error excitation. A three-dimensional multiple degrees of freedom lumped parameter dynamic model of a generic layshaft type geared rotor system (with three parallel rotating shafts coupled by two sets of gear pairs) has been formulated analytically. The model includes the effects of both rotational and translational displacements of each gears, and bounce and pitch motions of the counter-shaft. The natural frequencies and mode shapes are computed numerically by solving an eigenvalue problem derived from applying harmonic solutions to the equations of motion. The complete set of mode shapes are then used in forced response calculations based on the modal expansion method to predict gear accelerations, dynamic transmission errors, mesh force and bearing loads.
Technical Paper

The Impact of Injection Timing on In-Cylinder Fuel Distribution in a Natural Gas Powered Engine

1997-05-01
971708
One obstacle hindering the use of port fuel injection in natural gas engines is poor idle performance due to incomplete mixing of the cylinder charge prior to ignition. Fuel injection timing has a strong influence on the mixing process. The purpose of this work is to determine the impact of fuel injection timing on in-cylinder fuel distribution. Equivalence ratio maps have been acquired by Planar Laser Induced Fluorescence in an optical engine with a production cylinder head. Experimental results have been used to determine the injection timing which produces the most uniform fuel distribution for the given engine.
Technical Paper

The Application of Fuzzy Logic to the Diagnosis of Automotive Systems

1997-02-24
970208
The evolution of the diagnostic equipment for automotive application is the direct effect of the implementation of sophisticated and high technology control systems in the new generation of passenger cars. One of the most challenging issues in automotive diagnostics is the ability to assess, to analyze, and to integrate all the information and data supplied by the vehicle's on-board computer. The data available might be in the form of fault codes or sensors and actuators voltages. Moreover, as environmental regulations get more stringent, knowledge of the concentration of different species emitted from the tailpipe during the inspection and maintenance programs can become of great importance for an integrated powertrain diagnostic system. A knowledge-based diagnostic tool is one of the approaches that can be adopted to carry out the challenging task of detecting and diagnosing faults related to the emissions control system in an automobile.
Technical Paper

A Study of In-Cylinder Mixing in a Natural Gas Powered Engine by Planar Laser-Induced Fluorcence

1996-05-01
961102
There is currently a large effort in industry to make natural gas a viable alternative fuel for internal combustion engines. While the use of natural gas offers several advantages such as reduced emissions and potentially higher efficiency, it also has some inherent difficulties. Among these is the challenge of producing a consistently homogeneous air/fuel mixture while retaining the advantages which accompany modern, multi-point, fuel injection systems. The purpose of the research described here is to investigate the in-cylinder mixture formation process in a port injected natural gas fueled engine. Planar laser-induced fluorescence has been used to produce qualitative air fuel ratio maps in the engine cylinder, in selected planes, throughout the intake and compression strokes. The process consists of impinging a sheet of ultraviolet laser light on various planes parallel to, and normal to, the cylinder axis.
Technical Paper

Integrated Powertrain Diagnostic System: Linking On- and Off-Board Diagnostic Strategies

1996-02-01
960621
A number of automotive diagnostic equipment and procedures have evolved over the last two decades, leading to two generations of on-board diagnostic requirements (OBDI and OBDII), increasing the number of components and systems to be monitored by the diagnostic tools. The goal of On-Board Diagnostic is to alert the driver to the presence of a malfunction of the emission control system, and to identify the location of the problem in order to assist mechanics in properly performing repairs. The aim of this paper is to suggest a methodology for the development of an Integrated Powertrain Diagnostic System (EPDS) that can combine the information supplied by conventional tailpipe inspection programs with onboard diagnostics to provide fast and reliable diagnosis of malfunctions.
Technical Paper

Periodic Response of Nonlinear Engine Mounting Systems

1995-05-01
951297
A new semi-analytical framework for the study of passive or active engine mounting systems is presented. It recognizes that most practical problems incorporate a nonlinear mount or isolation element and the resulting physical system, consisting of the engine, mount and flexible base, involves many degrees of freedom. Unlike linear systems, sinusoidal excitation produces a periodic response, including super- and sub- harmonics. Two example case systems are employed to illustrate key concepts of the framework. The first numerical example case involves a passive hydraulic engine mount with an inertia track. The second example case is a novel experimental system that has been developed to study active and passive, nonlinear mounting problems. New analytical and experimental results are presented and various nonlinear phenomena are considered. The impact of nonlinearity on vibratory power transmission and active control is also investigated.
Technical Paper

Performance of a Ceramic CO Sensor in the Automotive Exhaust System

1995-02-01
950478
A prototype CO sensor based on anatase TiO2 was fabricated and tested in a Ford V6 engine. Fuel combustion was programmed to be near stoichiometric conditions, and emissions were monitored with an FT-IR analytical instrument. The sensor, positioned near the oxygen sensor in the exhaust manifold, was successfully tested for 50 cycles of revving and idling, and was observed to respond quickly and reproducibly. The sensor response was correlated to the CO concentration at specific engine temperatures and was found to vary systematically with increasing concentrations. This sensor has promising potentials to monitor the efficiency of the catalytic converter.
Technical Paper

The Effect of Engine Misfire on Exhaust Emission Levels in Spark Ignition Engines

1995-02-01
950480
One of the gray areas in the implementation of regulations limiting the generation of pollutants from mobile sources is the actual effectiveness of the exhaust gas emissions control strategy in vehicles that have been in use for some time. While it is possible today to conduct limited diagnostics with the on-board engine computer by performing periodic checks to verify the validity of the signals measured by the on-board sensors, and to measure tailpipe emissions during routine inspection and maintenance, the task of correlating these measurements with each other to provide an on-line, accurate diagnosis of critical malfunctions has thus far proven to be a very challenging task, especially in the case of misfire.
Technical Paper

Characterization of Intake-Generated Flow Fields in I.C. Engines Using 3-D Particle Tracking Velocimetry (3-D PTV)

1994-03-01
940279
Flow fields generated during the intake stroke of a 4-stroke I.C. engine are studied experimentally using water analog simulation. The fluid is seeded by small flow tracer particles and imaged by two digital cameras at BDC. Using a 3-D Particle Tracking Velocimetry technique recently developed, the 3-D motion of these flow tracers is determined in a completely automated way using sophisticated image processing and PTV algorithms. The resulting 3-D velocity fields are ensemble averaged over a large number of successive cycles to determine the mean characteristics of the flow field as well as to estimate the turbulent fluctuations. This novel technique was applied to three different cylinder head configurations. Each configuration was run for conditions simulating idle operation two different ways: first with both inlet ports open and second with only the primary port open.
X