Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Development of an Enhanced Brine Dewatering System

2009-07-12
2009-01-2486
Water recovery is essential for long-duration space exploration transit and outpost missions. Primary stage wastewater recovery systems partially satisfy this need, and generate concentrated wastewater brines that are unusable without further processing. The Enhanced Brine Dewatering System (EBDS) is being developed to allow nearly complete recovery of water from Lunar Outpost wastewater brines. This paper describes the operation of the EBDS and discusses the development and testing of the major functional materials, components, and subsystems, including the wastewater brine ersatz formulations that are used in subsystem testing. The assembly progress of the EBDS full system prototype is also discussed, as well as plans for testing the prototype hardware.
Technical Paper

Modeling and Simulation of the Drying of Cabin Solid Waste in Long-Term Space Missions

2008-06-29
2008-01-2194
A prototype packed bed convective dryer has been studied for use in an energy-efficient closed air-loop heat-pump drying system for astronaut cabin waste. This paper presents a transient continuum model for the heat and mass transfer between the air and wet ersatz trash in the cylindrical drying vessel. The model is based on conservation equations for energy and moisture applied to the air and solid phases and its formulation includes the unique waste characteristic of having both dry and wet solids. It incorporates heat and mass transfer coefficients for the system measured on an ersatz trash in the dryer vessel, and experimentally determined moisture sorption equilibrium relationship for the wet material. The resulting system of differential equations is solved by the finite-volume method as implemented by the commercial software COMSOL. The validated model will be used in the optimization of the entire closed-loop system consisting of dryer, condenser, and heat-recovery modules.
Technical Paper

Submerged Electrical Discharges for Water Decontamination and Disinfection

2007-07-09
2007-01-3175
A modular and scalable Dense Medium Plasma Water Purification Reactor was developed, which uses atmospheric-pressure electrical discharges under water to generate highly reactive species to break down organic contaminants and microorganisms. Key benefits of this novel technology include: (i) extremely high efficiency in both decontamination and disinfection; (ii) operating continuously at ambient temperature and pressure; (iii) reducing demands on the containment vessel; and (iv) requiring no consumables. This plasma based technology was developed to replace the catalytic reactor being used in the planned International Space Station Water Processor Assembly.
Technical Paper

AAH, The Latest Development in Microgravity Animal Research

2005-07-11
2005-01-2784
The Advanced Animal Habitat (AAH) represents the next generation of Space Station based animal research facilities. Building upon previously developed flight hardware and experience, the AAH offers greatly enhanced system capabilities and performance. The design focuses upon the creation of a robust and flexible platform capable of supporting present and future experimental needs. A modular packaging and distributed control architecture leads to increased system adaptability and expandability. The baseline configuration includes group housing capability for up to six rats with automated food and water delivery as well as waste collection. Animals are continuously monitored with three cameras during both day and night cycles. The animals can be accessed while on-orbit through the Life Sciences Glovebox to perform a wide variety of experimental protocols.
Technical Paper

ISRU Technologies to Support Human Space Exploration

2004-07-19
2004-01-2315
In-situ resource utilization (ISRU) is an important part of current mission architectures for both a return to the Moon and the eventual human exploration of Mars. ORBITEC has developed and demonstrated an innovative direct energy processing approach for carbon-reduction of lunar and Martian regolith that can operate in a nearly closed-loop manner. Carbon-reduction of regolith produces oxygen and a variety of other useful products, including silicon, iron and glass ceramic materials. In addition, various ISRU propulsion technologies that utilize lunar and Martian resources have been developed and demonstrated. Work is also being conducted with the USDA on techniques to use biomass and waste materials to manufacture items such as shelters, furniture, filters and paper. Atmospheric carbon dioxide on Mars would be used to support the production of biomass in excess of life support needs to be used as the raw material to manufacture useful products on-site.
Technical Paper

Space Plants in the Classroom

2004-07-19
2004-01-2417
A common question for students to ask educators is “When am I ever going to use this?” An excellent way to answer that question is to demonstrate how interrelated many subjects are. At ORBITEC in Madison, WI, we are developing systems to help teachers demonstrate the exciting interrelationships of science, math and technology using activities related to growing plants in space. We are developing two portable plant growth systems that integrate multiple disciplines, enriching students’ classroom experiences. Each portable growth unit is based on similar principles. The Space Garden and Biomass Production Education System (BPES) are growth units for indoor use that utilize a bellows technology to create a greenhouse-like environment. The Space Garden is a personal growth unit that a student can use individually while the BPES will be 0.25 m2, allowing larger-scale experimentation. The Space Garden will be best used in classrooms of grades four through seven.
Technical Paper

Plant Research Unit Control Architecture Overview

2004-07-19
2004-01-2392
High reliability and system flexibility are driving factors in the Plant Research Unit development. Proper selection of the unit electrical and software control architecture is fundamental to achieving these goals. Key features of the PRU control design include the use of a real time operating system for main process control, dynamic power management, a distributed control architecture and subsystem modularity. The chosen approach will allow future modifications and improvements to be incorporated at the subsystem level with minimal impact to the unit overall. Hardware fault tolerance and redundancy enhance system reliability.
Technical Paper

Collaborative 3D Training: From Astronauts to Automotive Techs

2004-07-19
2004-01-2593
As spaceflight hardware becomes increasingly complex, ever greater demands are placed on astronauts’ training capacity. In addition, astronauts are being asked to conduct unplanned operations with minimal or no training, and long duration operations preclude the ability to thoroughly train before flight on many operations. This trend will be more pronounced as we approach remote operations on the moon and Mars in the Exploration era. In response, Orbital Technologies Corporation has developed an interactive and collaborative 3D simulation training solution for payloads and International Space Station systems. This portable web-based training system provides flexible, efficient and effective pre-flight, real-time and operational training support. Unlike virtual reality systems, this next generation simulation can also be used for remote or just-in-time procedural training between ground-based experts and astronauts in space due to its low file size and collaboration capability.
Technical Paper

Analysis of Crew Interaction with Long-Duration Plant Growth Experiment

2003-07-07
2003-01-2482
The Biomass Production System (BPS) was flown on the ISS for 73 days as part of the Increment 4 mission. To obtain maximum benefit from the long mission duration, numerous manual crew procedures were incorporated into the BPS experiments. These procedures included gas sampling, root module priming, harvesting, pollination, filter cleaning, water refill, and water sampling. On-orbit crew assessments were filled out for each of these procedures to evaluate the ability of BPS to accommodate them. The assessment asked questions about each phase of an activity and solicited recommendations for improvements. Further analysis of most procedures was provided by detailed video made on-orbit and multiple post-flight crew debriefs. Most assessments indicated no need for improvements, but a number of crew suggestions will be incorporated into hardware and procedure updates.
Technical Paper

Biomass Production System Hardware Performance

2003-07-07
2003-01-2484
The Biomass Production System, recently flown on the ISS for 73 days, demonstrated significant advancements in functional performance over previous systems for conducting plant science in microgravity. The Biomass Production System (BPS) was the first flight of a system with multiple, independently controlled, plant growth chambers. Each of four chambers was controlled separately with respect to temperature, humidity, light level, nutrient level, and CO2, and all were housed in a double Middeck locker-sized payload. During the mission, each of the subsystems performed within specification. This paper focuses on how the performance of the BPS hardware allowed successful completion of the preflight objectives.
X