Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluation of Indrio’s Ammonia Sensor using a Diesel Fuel Based Burner Platform

2023-04-11
2023-01-0383
This program involved the detailed evaluation of a novel laser-based in-exhaust ammonia sensor using a diesel fuel-based burner platform integrated with an ammonia injection system. Test matrix included both steady-state modes and transient operation of the burner platform. Steady-state performance evaluation included tests that examined impact of exhaust gas temperature, gas velocity and ammonia levels on sensor response. Furthermore, cross sensitivity of the sensor was examined at different levels of NOX and water vapor. Transient tests included simulation of the FTP test cycles at different ammonia and NOX levels. A Fourier transform infrared (FTIR) spectrometer as well as NIST traceable ammonia gas bottles (introduced into the exhaust stream via a calibrated flow controller) served as references for ammonia measurement.
Journal Article

Development of Steady State NO2:NOX Control via an Independent Nitric Decomposition System for the Exhaust Composition Transient Operation Laboratory

2022-03-29
2022-01-0548
Southwest Research Institute (SwRI) utilizes the burner-based Exhaust Composition Transient Operation LaboratoryTM (ECTO-Lab) to accurately simulate transient engines and replicate real exhaust that is produced by light and heavy-duty engines for aftertreatment aging and evaluations. This system can generate and dose NOX over transient cycles from a range of 20 ppm to 1200 ppm where the NOX is generated by the in-situ decomposition and combustion of a fuel-bound, nitrogen containing compound. During the combustion and decomposition of the nitrogen containing compound over 95 % of the NOX generated is in the form of NO. To authentically simulate exhaust gases, it is necessary to account for the distribution of the NO to the NO2. Since previous work has established that the decomposition of nitric acid can be utilized as a method to generate NO2, the objective of this project was to develop control of NO and NO2 within SwRI’s ECTO-Lab through the decomposition of nitric acid.
Journal Article

Extension of Analytical Methods for Detailed Characterization of Advanced Combustion Engine Emissions

2016-10-17
2016-01-2330
Advanced combustion strategies used to improve efficiency, emissions, and performance in internal combustion engines (IC) alter the chemical composition of engine-out emissions. The characterization of exhaust chemistry from advanced IC engines requires an analytical system capable of measuring a wide range of compounds. For many years, the widely accepted Coordinating Research Council (CRC) Auto/Oil procedure[1,2] has been used to quantify hydrocarbon compounds between C1 and C12 from dilute engine exhaust in Tedlar polyvinyl fluoride (PVF) bags. Hydrocarbons greater than C12+ present the greatest challenge for identification in diesel exhaust. Above C12, PVF bags risk losing the higher molecular weight compounds due to adsorption to the walls of the bag or by condensation of the heavier compounds. This paper describes two specialized exhaust gas sampling and analytical systems capable of analyzing the mid-range (C10 - C24) and the high range (C24+) hydrocarbon in exhaust.
Technical Paper

Efficient Methodology for Automotive Powertrain Acoustic Radiation Analysis

2016-06-15
2016-01-1794
In automotive NVH, the noise generated by a powertrain is still one of the major noise sources especially at low and mid vehicle velocity. For this reason automotive OEMs are continuously focusing on methods to efficiently analyze this noise source. For this purpose, a well-established simulation methodology can provide results thoroughly, within a limited amount of time and with a reduced cost contrary to experiments which are involved in late design phases and are more expensive. This paper aims at presenting an approach to simulate efficiently the acoustic radiation from automotive components. With this aim in mind, the acoustic response of a realistic powertrain unit subjected to working conditions ranging from 1000 RPM to 4500 RPM is studied until 3000 Hz. Several radiating boundary conditions will be assessed in order to detect the most efficient set-up for this kind of problem and to extract the optimized modeling guidelines.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Technical Paper

Transient Control of a Dedicated EGR Engine

2016-04-05
2016-01-0616
Southwest Research Institute (SwRI) has successfully demonstrated the cooled EGR concept via the High Efficiency Dilute Gasoline Engine (HEDGE) consortium. Dilution of intake charge provides three significant benefits - (1) Better Cycle Efficiency (2) Knock Resistance and (3) Lower NOx/PM Emissions. But EGR dilution also poses challenges in terms of combustion stability, condensation and power density. The Dedicated EGR (D-EGR) concept brings back some of the stability lost due to EGR dilution by introducing reformates such as CO and H2 into the intake charge. Control of air, EGR, fuel, and ignition remains a challenge to realizing the aforementioned benefits without sacrificing performance and drivability. This paper addresses the DEGR solution from a controls standpoint. SwRI has been developing a unified framework for controlling a generic combustion engine (gasoline, diesel, dual-fuel natural gas etc.).
Technical Paper

Port Design for Charge Motion Improvement within the Cylinder

2016-04-05
2016-01-0600
The engine intake process governs many aspects of the flow within the cylinder. The inlet valve is the minimum area, so gas velocities at the valve are the highest velocities seen. Geometric configuration of the inlet ports and valves, and the opening schedule create organized large scale motions in the cylinder known as swirl and tumble. Good charge motion within the cylinder will produce high turbulence levels at the end of the compression stroke. As the turbulence resulting from the conversion energy of the inlet jet decays fast, the strategy is to encapsulate some of the inlet jet in the organized motions. In this work the baseline port of a 2.0 L gasoline engine was modified by inserting a tumble plate. The work was done in support of an experimental study for which a new single-cylinder research engine was set up to allow combustion system parameters to be varied in steps over an extensive range. Tumble flow was one such parameter.
Technical Paper

Parametric Study and Secondary Circuit Model Calibration Using Spark Calorimeter Testing

2015-04-14
2015-01-0778
The presented work describes how spark calorimeter testing was used for parametric study and secondary circuit model calibration. Tests were conducted at different pressures, sparkplug gaps and supplied primary energies. The conversion efficiency increases and the spark duration decreases when the gas pressure or the sparkplug gap size is increased. Both gas pressure and sparkplug gas size increase the positive column voltage which represents part of the electrical energy delivered to the gas. The opposite direction occurs when the supplied primary energy is increased. The testing results were then used to calibrate the secondary circuit model which consisted of the sparkplug, the sparkplug gap and the secondary wiring. A step-by-step method was used to calibrate the three constants of the model to match the calculated delivered energy with test data during arc / glow phase.
Technical Paper

Air-Assisted Direct Injection Diesel Investigations

2013-04-08
2013-01-0907
Enhancement of fuel/air mixing is one path towards enabling future diesel engines to increase efficiency and control emissions. Air-assist fuel injections have shown potential for low pressure applications and the current work aims to extend air-assist feasibility understanding to high pressure environments. Analyses were completed and carried out for traditional high pressure fuel-only, internal air-assist, and external air-assist fuel/air mixing processes. A combination of analytical 0-D theory and 3D CFD were used to help understand the processes and guide the design of the air-assisted setup. The internal air-assisted setup was determined to have excellent liquid fuel vaporization, but poorer fuel dispersion than the traditional high-pressure fuel injections.
Technical Paper

Numerical and Experimental Characterization of the Dual-Fuel Combustion Process in an Optically Accessible Engine

2013-04-08
2013-01-1670
The dual-fuel combustion process of ethanol and n-heptane was characterized experimentally in an optically accessible engine and numerically through a chemical kinetic 3D-CFD investigation. Previously reported formaldehyde PLIF distributions were used as a tracer of low-temperature oxidation of straight-chained hydrocarbons and the numerical results were observed to be in agreement with the experimental data. The numerical and experimental evidence suggests that a change in the speed of flame propagation is responsible for the observed behavior of the dual-fuel combustion, where the energy release duration is increased and the maximum rate of pressure rise is decreased. Further, an explanation is provided for the asymmetrical energy release profile reported in literature which has been previously attributed to an increase in the diffusion-controlled combustion phase.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Journal Article

Development of a Solid Exhaust Particle Number Measurement System Using a Catalytic Stripper Technology

2011-04-12
2011-01-0635
A solid particle number measurement system (SPNMS) was developed using a catalytic stripper (CS) technology instead of an evaporation tube (ET). The ET is used in commercially available systems, compliant with the Particle Measurement Program (PMP) protocol developed for European Union (EU) solid particle number regulations. The catalytic stripper consists of a small core of a diesel exhaust oxidation catalyst. The SPNMS/CS met all performance requirements under the PMP protocol. It showed a much better performance in removing large volatile tetracontane particles down to a size well below the PMP lower cut-size of 23 nm, compared to a SPNMS equipped with an ET instead of a CS. The SPNMS/CS also showed a similar performance to a commercially available system when used on a gasoline direct injection (GDI) engine exhaust.
Journal Article

Particle Emissions from a 2009 Gasoline Direct Injection Engine Using Different Commercially Available Fuels

2010-10-25
2010-01-2117
Total and solid particle mass, size, and number were measured in the dilute exhaust of a 2009 vehicle equipped with a gasoline direct injection engine along with an exhaust three-way-catalyst. The measurements were performed over the FTP-75 and the US06 drive cycles using three different U.S. commercially available fuels, Fuels A, B, and C, where Fuel B was the most volatile and Fuel C was the least volatile with higher fractions of low vapor pressure hydrocarbons (C10 to C12), compared to the other two fuels. Substantial differences in particle mass and number emission levels were observed among the different fuels tested. The more volatile gasoline fuel, Fuel B, resulted in the lowest total (solid plus volatile) and solid particle mass and number emissions. This fuel resulted in a 62 percent reduction in solid particle number and an 88 percent reduction in soot mass during the highest emitting cold-start phase, Phasel, of the FTP-75, compared to Fuel C.
Technical Paper

Verification of a Gaseous Portable Emissions Measurement System with a Laboratory System Using the Code of Federal Regulations Part 1065

2010-04-12
2010-01-1069
This paper summarizes the validation testing of the Horiba Instruments OBS-2200 gaseous portable emissions measurement system (PEMS) for in-use compliance testing per Title 40 of the Code of Federal Regulations (CFR) Part 1065.920 (Section 1065.920). The qualification process included analyzer verifications as well as engine testing on a model-year 2007 heavy-duty diesel engine produced by Volvo Powertrain. The measurements of brake-specific emissions with the OBS-2200 were compared to those of a CFR Part 1065-compliant CVS test cell over a series of not-to-exceed (NTE) events. The OBS-2200 passed all linearity verifications and analyzer checks required of PEMS. Engine test validation was achieved for all three regulated gaseous emissions (CO, NMHC, and NOX) per 40 CFR Part 1065.920(b)(5)(i), which requires a minimum of 91 percent of the measurement allowance adjusted deltas to be less than or equal to zero.
Technical Paper

Comparison of Four Sampling Methods for Semi-volatile Organic Compounds in Gas Phase Diesel Engine Exhausts

2008-10-06
2008-01-2435
Newly designed Teflon® O-rings along with XAD-2 resin, stainless steel screens, lock rings, and glass cartridges were used to construct a new semi-volatile organic compounds (SVOC's) sampling device. This new sampling device allows direct and repeated sampling, extraction, and cleaning without ever having to be disassembled or reassembled. This new XAD-2 glass cartridge (X2) was compared with three other sampling methods namely Empore® membrane (EM), hexane impinger (HI), and “Cold Trap” (CT) for SVOC sampling efficiency on diesel engine exhaust emissions. The X2 method showed the highest overall SVOC collection efficiency, followed by the EM and HI methods. The X2 method has higher trapping efficiency for the oxygenates, polycyclic aromatic hydrocarbons (PAH's), alkyl cyclohexanes, and the alkyl aromatics than the other three SVOC sampling methods. The HI method has the highest trapping efficiency for the normal alkanes.
Journal Article

Investigation of In-cylinder NOx and PM Reduction with Delphi E3 Flexible Unit Injectors on a Heavy-duty Diesel Engine

2008-06-23
2008-01-1792
In-cylinder emission controls were the focus for diesel engines for many decades before the emergence of diesel aftertreatment. Even with modern aftertreatment, control of in-cylinder processes remains a key issue for developing diesel vehicles with low tailpipe emissions. A reduction in in-cylinder emissions makes aftertreatment more effective at lower cost with superior fuel economy. This paper describes a study focused on an in-cylinder combustion control approach using a Delphi E3 flexible fuel system to achieve low engine-out NOx and PM emissions. A 2003 model year Detroit Diesel Corporation Series 60 14L heady-duty diesel engine, modified to accept the Delphi E3 unit injectors, and ultra low sulfur fuel were used throughout this study. The process of achieving premixed low temperature combustion within the limited range of parameters of the stock ECU was investigated.
Journal Article

Synergies between High EGR Operation and GDI Systems

2008-04-14
2008-01-0134
A gasoline direct injection engine was operated at elevated EGR levels over a significant portion of the performance map. The engine was modified to use both cooled and un-cooled EGR in high pressure loop and low pressure loop configurations. The addition of EGR at low and part load was shown to decrease NO and CO emissions and to reduce fuel consumption by up to 4%, primarily through the reduction in pumping losses. At high loads, the addition of EGR resulted in higher fuel consumption benefits of 10-20% as well as the expected NO and CO reductions. The fuel economy benefit at high loads resulted from a decrease in knock tendency and a subsequent improvement in combustion phasing as well as reductions in exhaust temperatures that eliminated the requirement for over-fuelling.
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Fischer-Tropsch Diesel Fuel and Aftertreatment at a Low NOx, Low Power Engine Condition

2005-10-24
2005-01-3764
Previously we reported (SAE Paper 2005-01-0475) that emissions of toxicologically relevant compounds from an engine operating at low NOx conditions using Fischer-Tropsch fuel (FT100) were lower than those emissions from the engine using an ultra-low sulfur (15 PPM sulfur) diesel fuel (BP15). Those tests were performed at two operating modes: Mode 6 (4.2 bar BMEP, 2300 RPM) and Mode 11 (2.62 bar BMEP, 1500 RPM). We wanted to evaluate the effect on emissions of operating the engine at low power (near idle) in conjunction with the low NOx strategy. Specifically, we report on emissions of total hydrocarbon (HC), carbon monoxide (CO), NOx, particulates (PM), formaldehyde, acetaldehyde, benzene, 1,3-butadiene, gas phase polyaromatic hydrocarbons (PAH's) and particle phase PAH's from a DaimlerChrysler OM611 CIDI engine using a low NOx engine operating strategy at Mode 22 (1.0 bar BMEP and 1500 RPM).
Technical Paper

The Heavy Duty Gasoline Engine - A Multi-Cylinder Study of a High Efficiency, Low Emission Technology

2005-04-11
2005-01-1135
SwRI has developed a new technology concept involving the use of high EGR rates coupled with a high-energy ignition system in a gasoline engine to improve fuel economy and emissions. Based on a single-cylinder study [1], this study extends the concept of a high compression ratio gasoline engine with EGR rates > 30% and a high-energy ignition system to a multi-cylinder engine. A 2000 MY Isuzu Duramax 6.6 L 8-cylinder engine was converted to run on gasoline with a diesel pilot ignition system. The engine was run at two compression ratios, 17.5:1 and 12.5:1 and with two different EGR systems - a low-pressure loop and a high pressure loop. A high cetane number (CN) diesel fuel (CN=76) was used as the ignition source and two different octane number (ON) gasolines were investigated - a pump grade 91 ON ((R+M)/2) and a 103 ON ((R+M)/2) racing fuel.
Technical Paper

Evaluation of Smoke Toxicity of Automotive Materials According to Standard Small-Scale Test Procedures

2005-04-11
2005-01-1558
This paper examines the role of inhalation toxicity of the products of combustion that are generated in post-collision motor vehicle fires by automotive materials used under the hood. Small-scale toxic gas measurements were performed at Southwest Research Institute® (SwRI®) on eighteen components of two of the vehicles that were tested previously at the Factory Mutual Test Center (FMTC). The small-scale toxic gas measurements were obtained under dynamic flow-through conditions in the Cone Calorimeter (ASTM E 1354) and under static conditions in two smoke chamber methods (ASTM E 662 and ASTM E 1995); all methods were supplemented with FTIR gas analysis. Average yields of toxic gases measured in the Cone Calorimeter are comparable to but consistently lower than values reported in the literature for the Fire Propagation Apparatus (ASTM E 2058).
X