Refine Your Search

Topic

Author

Search Results

Technical Paper

Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

2021-08-31
2021-01-1020
It is particularly easy to get tunnel vision as a domain expert, and focus only on the improvements one could provide in their area of expertise. To make matters worse, many Original Equipment Manufacturers (OEMs) are silo-ed by domain of expertise, unconsciously promoting this single mindedness in design. Unfortunately, the successful and profitable development of a vehicle is dependent on the delicate balance of performance across many domains, involving multiple physics and departments. Taking for instance the design of a Heating, Ventilation & Air Conditioning (HVAC) system, the device’s primary function is to control the climate system in vehicle cabins, and more importantly to make sure that critical areas on the windshield can be defrosted in cold weather conditions within regulation time. With the advent of electric and autonomous vehicles, further importance is now also placed on the energy efficiency of the HVAC, and its noise.
Technical Paper

The Particle Number Counter as a “Black Box” - A Novel Approach to a Universal Particle Number Calibration Standard for Automotive Exhaust

2020-09-15
2020-01-2195
The reduction of vehicle exhaust particle emissions is a success story of European legislation. Various particle number (PN) counters and calibration procedures serve as tools to enforce PN emission limits during vehicle type approval (VTA) or periodical technical inspection (PTI) of in-use vehicles. Although all devices and procedures apply to the same PN-metric, they were developed for different purposes, by different stakeholder groups and for different target costs and technical scopes. Furthermore, their calibration procedures were independently defined by different stakeholder communities. This frequently leads to comparability and interpretation issues. Systematic differences of stationary and mobile PN counters (PN-PEMS) are well-documented. New, low-cost PTI PN counters will aggravate this problem. Today, tools to directly compare different instruments are scarce.
Technical Paper

A Physical-Based Approach for Modeling the Influence of Different Operating Parameters on the Dependency of External EGR Rate and Indicated Efficiency

2018-09-10
2018-01-1736
External Exhaust Gas Recirculation (EGR) provides an opportunity to increase the efficiency of turbocharged spark-ignition engines. Of the competing technologies and configurations, Low-Pressure EGR (LP-EGR) is the most challenging in terms of its dynamic behavior. Only some of the stationary feasible potential can be used during dynamic engine operation. To guarantee fuel consumption-optimized engine operation with no instabilities, a load point-dependent limitation of the EGR rate or alternatively an adaptation of the operating point to the actual EGR rate is crucial. For this purpose, a precise knowledge of efficiency and combustion variance is necessary. Since the operating state includes the actual EGR rate, it has an additional dimension, which usually results in an immense measuring effort.
Journal Article

Novel Index for Evaluation of Particle Formation Tendencies of Fuels with Different Chemical Compositions

2017-08-18
2017-01-9380
Current regulatory developments aim for stricter emission limits, increased environmental protection and purification of air on a local and global scale. In order to find solutions for a cleaner combustion process, it is necessary to identify the critical components and parameters responsible for the formation of emissions. This work provides an evaluation process for particle formation during combustion of a modern direct injection engine, which can help to create new aftertreatment techniques, such as a gasoline particle filter (GPF) system, that are fit for purpose. With the advent of “real driving emission” (RDE) regulations, which include market fuels for the particulate number testing procedure, the chemical composition and overall quality of the fuel cannot be neglected in order to yield a comparable emission test within the EU and worldwide.
Journal Article

Bridging the Gap between Open Loop Tests and Statistical Validation for Highly Automated Driving

2017-03-28
2017-01-1403
Highly automated driving (HAD) is under rapid development and will be available for customers within the next years. However the evidence that HAD is at least as safe as human driving has still not been produced. The challenge is to drive hundreds of millions of test kilometers without incidents to show that statistically HAD is significantly safer. One approach is to let a HAD function run in parallel with human drivers in customer cars to utilize a fraction of the billions of kilometers driven every year. To guarantee safety, the function under test (FUT) has access to sensors but its output is not executed, which results in an open loop problem. To overcome this shortcoming, the proposed method consists of four steps to close the loop for the FUT. First, sensor data from real driving scenarios is fused in a world model and enhanced by incorporating future time steps into original measurements.
Journal Article

Timing Evaluation in E/E Architecture Design at BMW

2014-04-01
2014-01-0317
Timing evaluation methods help to design a robust and extendible E/E architecture (electric/electronic). BMW has introduced the systematic application of such methods in the E/E design process within the last three years. Meanwhile, most of the architectural changes are now verified by a tool-based, automatic real-time analysis. This has increased the accuracy of the network planning and productivity of the BMW network department. In this paper, we give an overview of the actual status of timing evaluations in BMW's E/E architecture design. We discuss acceptance criteria, analysis metrics, and design rules, as far as these are related to timing. We look specifically at automation options, as these improve the productivity further. We will see that timing analysis has matured and should be mandatory for application in mass production E/E architecture development. At the same time, there is room for future improvements.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Extraction of Static Car Body Stiffness from Dynamic Measurements

2010-04-12
2010-01-0228
This paper describes a practical approach to extract the global static stiffness of a body in white (BIW) from dynamic measurements in free-free conditions. Based on a limited set of measured frequency response functions (FRF), the torsional and bending stiffness values are calculated using an FRF based substructuring approach in combination with inverse force identification. A second approach consists of a modal approach whereby the static car body stiffness is deduced from a full free-free modal identification including residual stiffness estimation at the clamping and load positions. As an extra important result this approach allows for evaluating the modal contribution of the flexible car body modes to the global static stiffness values. The methods have been extensively investigated using finite element modeling data and verified on a series of body in white measurements.
Technical Paper

The BMW AVZ Wind Tunnel Center

2010-04-12
2010-01-0118
The new BMW Aerodynamisches Versuchszentrum (AVZ) wind tunnel center includes a full-scale wind tunnel, "The BMW Windkanal" and an aerodynamic laboratory "The BMW AEROLAB." The AVZ facility incorporates numerous new technology features that provide design engineers with new tools for aerodynamic optimization of vehicles. The AVZ features a single-belt rolling road in the AEROLAB and a five-belt rolling road in the Windkanal for underbody aerodynamic simulation. Each of these rolling road types has distinct advantages, and BMW will leverage the advantages of each system. The AEROLAB features two overhead traverses that can be configured to study vehicle drafting, and both static and dynamic passing maneuvers. To accurately simulate "on-road" aerodynamic forces, a novel collector/flow stabilizer was developed that produces a very flat axial static pressure distribution. The flat static pressure distribution represents a significant improvement relative to other open jet wind tunnels.
Journal Article

Hydrogen Fuel Consumption Correlation between Established EPA Measurement Methods and Exhaust Emissions Measurements

2008-04-14
2008-01-1038
The development of hydrogen-fueled vehicles has created the need for established fuel consumption testing methods. Until now the EPA has only accepted three methods of hydrogen fuel consumption testing, gravimetric, PVT (stabilized pressure, volume and temperature), and Coriolis mass flow; all of which necessitate physical measurements of the fuel supply [1]. BMW has developed an equation and subsequent testing methods to accurately and effectively determine hydrogen fuel consumption in light-duty vehicles using only exhaust emissions. Known as “Hydrogen-Balance”, the new equation requires no changes to EPA procedures and only slight modifications to most existing chassis dynamometers and CVS (Constant Volume Sampling) systems. The SAE 2008-01-1036, also written by BMW, explains the background as well as required equipment and changes to the CVS testing system. This paper takes hydrogen balance further by testing it against the three EPA established forms of fuel consumption.
Journal Article

Possible Influences on Fuel Consumption Calculations while using the Hydrogen-Balance Method

2008-04-14
2008-01-1037
The Hydrogen-Balance equation makes it possible to calculate the fuel economy or fuel consumption of hydrogen powered vehicles simply by analyzing exhaust emissions. While the benefits of such a method are apparent, it is important to discuss possible influencing factors that may decrease Hydrogen-Balance accuracy. Measuring vehicle exhaust emissions is done with a CVS (Constant Volume Sampling) system. While the CVS system has proven itself both robust and precise over the years, utilizing it for hydrogen applications requires extra caution to retain measurement accuracy. Consideration should be given to all testing equipment, as well as the vehicle being tested. Certain environmental factors may also play a role not just in Hydrogen-Balance accuracy, but as also in other low emission testing accuracy.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

Comprehensive Approach for the Chassis Control Development

2006-04-03
2006-01-1280
Handling characteristics, ride comfort and active safety are customer relevant attributes of modern premium vehicles. Electronic control units offer new possibilities to optimize vehicle performance with respect to these goals. The integration of multiple control systems, each with its own focus, leads to a high complexity. BMW and ITK Engineering have created a tool to tackle this challenge. A simulation environment to cover all development stages has been developed. Various levels of complexity are addressed by a scalable simulation model and functionality, which grows step-by-step with increasing requirements. The simulation environment ensures the coherence of the vehicle data and simulation method for development of the electronic systems. The article describes both the process of the electronic control unit (ECU) development and positive impact of an integrated tool on the entire vehicle development process.
Technical Paper

Liquid Hydrogen Storage Systems Developed and Manufactured for the First Time for Customer Cars

2006-04-03
2006-01-0432
There is a common understanding that hydrogen has a great potential to be the fuel of the future. In addition to the challenge of developing appropriate hydrogen propulsion systems the development of hydrogen storage systems is the second big issue. Due to its high potential in cost and weight and specific storage capacity, the BMW Group is focusing on the development of liquid hydrogen storage systems. In the next hydrogen 7-Series the BMW Group is about to make for the first time the step from demonstration fleets to cars used by external users with a liquid hydrogen storage system. To realize this significant goal, special focus has to be put on high safety standards so that hydrogen can be considered as safe as common types of fuel, and on the every day reliability of the storage system. Moreover, the development of strong partnerships with suppliers is a key factor to realize the design and identify appropriate manufacturing processes.
Technical Paper

Energy Consumption of Electro-Hydraulic Steering Systems

2005-04-11
2005-01-1262
The reduction of fuel consumption in vehicles remains an important target in vehicle development to meet the carbon dioxide emission reduction target. One of the significant consumers of energy in a vehicle is the hydraulic power-assisted steering system (HPS) powered by the engine belt drive. To reduce the energy consumption an electric motor can be used to drive the pump (electro-hydraulic power steering or EHPS). In this work a simulation model was developed and validated to model the energy consumption of the whole steering system. This includes an advanced friction model for the steering rack, a physically modeled steering valve, the hydraulic pump and the electric motor with the control unit. The model is used to investigate the influence of various parameters on the energy consumption for different road situations. The results identified the important parameters influencing the power consumption and showed the potential to reduce the power consumption of the system.
Technical Paper

Problems of Partial Sample Systems for Modal Raw Exhaust Mass Emission Measurement

2003-03-03
2003-01-0779
Changing of emission levels leads to an increasing demand for a satisfying solution to measure mass emissions of motor vehicles on both, engine and chassis dynamometers. Partial flow systems may fit to the demands. These systems require an exact determination of exhaust volume flow and time aligned concentration measurement. This paper will address these issues and problems related with partial flow sampling. Several exhaust flow measurement systems have been studied and integrated mass results have been checked against the full flow CVS. As the investigations indicate, modal mass calculation from sampling direct exhaust at the end of tailpipe is feasible but not a satisfying solution in equivalency and repeatability in comparison to CVS-results. This is especially the case on emission levels near or below ULEV.
Technical Paper

HC Measurements by Means of Flame Ionization: Background and Limits of Low Emission Measurement

2003-03-03
2003-01-0387
Flame Ionization Detectors (FID) can be used to detect organic hydrocarbons that occur in plastics, lacquers, adhesives, solvents and gasoline. These substances are ionized in the hydrogen flame of the FID. The ionization current that is produced depends on the amount of hydrocarbon in the sample. With the lowering of emissions limits, measuring instruments, including the FID, have to be able to detect very low values. For SULEV (Super-Ultra Low Emissions Vehicle) measurements the accuracy and also the general applicability of the CVS (Constant Volume Sampling) measuring technique are now questioned. Basic understanding is necessary to ask the right questions. One important issue is the science behind the measurement principle of the FID. And in this case especially the influence of contamination of the operating gases, cross sensitivity and data processing on the Limit of Detection (LOD).
Technical Paper

Studies on Enhanced CVS Technology to Achieve SULEV Certification

2002-03-04
2002-01-0048
For the measurement of exhaust emissions, Constant Volume Sampling (CVS) technology is recommended by legislation and has proven its practical capability in the past. However, the introduction of new low emission standards has raised questions regarding the accuracy and variability of the CVS system when measuring very low emission levels. This paper will show that CVS has the potential to achieve sufficient precision for certification of SULEV concepts. Thus, there is no need for the introduction of new test methods involving high cost. An analysis of the CVS basic equations indicates the importance of the Dilution Factor (DF) for calculating true mass emissions. A test series will demonstrate that, by adjusting the dilution and using state of the art analyzers, the consistency of exhaust results is comparable with those of LEV concepts, measured with conventional CVS systems and former standard analyzers.
Technical Paper

Powder Clear Coat -- A Quantum Leap in Automotive Paint Technology

2000-03-06
2000-01-1359
BMW - the driving force for progress As we approach the new millenium, to ensure the continuation of the progress into the future, BMW uses leading edge approaches in its materials research and processing. Overview production sites all over the world - Plant Dingolfing Quality requirements for automobile painting The complex and wide-ranging demands that the outer skin of an automobile has to meet offered us the chance to advance with a technological leap from liquid clear coat to the potentials of powder clear coat. The new clear coat technology The clear coat creates the ultimate gloss effect - and powder-based clear coat makes the surface of the car even more brilliant. To achieve this effect the body is covered by microscopically small paint particles. A pioneer achievement A lot of challenges in both material development and systems-engineering had to be made. The automotive world was watching, many experts said it could not be successfully used as an OEM clear coat.
Technical Paper

The Development of a BMW Catalyst Concept for LEV/EU3 Legislation for a 8 Cylinder Engine by Using Thin Wall Ceramic Substrates

1999-03-01
1999-01-0767
For the BMW V8 engine, a new LEV/EU3 emission concept has been developed by improvements to the previous engine management and secondary air supply and a complete new exhaust system. Beside the emission limits, also high engine output targets and high operating reliability were targeted. In addition the new exhaust system had to meet low cost targets. Based on these requirements an exhaust concept with separate pre catalyst and main catalyst was chosen. To reduce the heat mass and to optimize the pressure drop, 4.3mil/400cpsi thin wall ceramic substrates were used for the pre and main catalyst.
X