Refine Your Search

Topic

Search Results

Technical Paper

Estimating Tire Pressure Based on Different Tire Temperature Measurement Points

2024-01-15
2024-01-5002
Knowing the tire pressure during driving is essential since it affects multiple tire properties such as rolling resistance, uneven wear, and how prone the tire is to tire bursts. Tire temperature and cavity pressure are closely tied to each other; a change in tire temperature will cause an alteration in tire cavity pressure. This article gives insights into which tire temperature measurement position is representative enough to estimate pressure changes inside the tire, and whether the pressure changes can be assumed to be nearly isochoric. Climate wind tunnel and road measurements were conducted where tire pressure and temperature at the tire inner liner, the tire shoulder, and the tread surface were monitored. The measurements show that tires do not have a uniform temperature distribution. The ideal gas law is used to estimate the tire pressure from the measured temperatures.
Technical Paper

Correlation of Oil Originating Particle Emissions and Knock in a PFI HD SI Engine Fueled with Methanol

2023-08-28
2023-24-0036
A viable option to reduce global warming related to internal combustion engines is to use renewable fuels, for example methanol. However, the risk of knocking combustion limits the achievable efficiency of SI engines. Hence, most high load operation is run at sub-optimal conditions to suppress knock. Normally the fuel is a limiting factor, however when running on high octane fuels such as methanol, other factors also become important. For example, oil droplets entering the combustion chamber have the possibility to locally impact both temperature and chemical composition. This may create spots with reduced octane number, hence making the engine more prone to knock. Previous research has confirmed a connection between oil droplets in the combustion chamber and knock. Furthermore, previous research has confirmed a connection between oil droplets in the combustion chamber and exhaust particle emissions.
Technical Paper

Evaluation of Cylinder State Estimator using Fuel Evaporation Assessment in a PFI Methanol HD SI Engine

2022-08-30
2022-01-1065
Modern spark-ignited (SI) engines offer excellent emission reduction when operated with a stoichiometric mixture and a three-way catalytic converter. A challenge with stoichiometric compared to diluted operation is the knock propensity due to the high reactivity of the mixture. This limits the compression ratio, thus reducing engine efficiency and increasing exhaust temperature. The current work evaluated a model of conditions at inlet valve closing (IVC) and top dead center (TDC) for steady state operation. The IVC temperature model is achieved by a cycle-to-cycle resolved residual gas fraction estimator. Due to the potential charge cooling effect from methanol, a method was proposed to determine the fraction of fuel sourced from a wall film. Determining the level of charge cooling is important as it heavily impacts the IVC and TDC temperatures.
Technical Paper

Cycle-To-Cycle Effects and Knock Prediction using Spark Induced Disturbances on a PFI Methanol HD SI Engine

2022-08-30
2022-01-1067
Stoichiometric operation of a Port Fueled Injection (PFI) Spark-Ignited (SI) engine with a three-way catalytic converter offers excellent CO2 reduction when run on renewable fuel. The main drawbacks with stoichiometric operation are the increased knock propensity, high exhaust temperature and reduced efficiency. Knock is typically mitigated with a reactive knock controller, with retarded ignition timing whenever knock is detected and the timing then slowly advanced until knock is detected again. This will cause some cycles to operate with non-ideal ignition timing. The current work evaluates the possibility to predict knock using the measured and modelled temperatures at Inlet Valve Closing (IVC) and Top Dead Center (TDC). Feedback effects are studied beyond steady state operation by using induced ignition timing disturbances.
Technical Paper

FPGA Implementation of In-Cycle Closed-Loop Combustion Control Methods

2021-09-05
2021-24-0024
This paper investigates the FPGA resources for the implementation of in-cycle closed-loop combustion control algorithms. Closed-loop combustion control obtains feedback from fast in-cylinder pressure measurements for accurate and reliable information about the combustion progress, synchronized with the flywheel encoder. In-cycle combustion control requires accurate and fast computations for their real-time execution. A compromise between accuracy and computation complexity must be selected for an effective combustion control. The requirements on the signal processing (evaluation rate and digital resolution) are investigated. A common practice for the combustion supervision is to monitor the heat release rate. For its calculation, different methods for the computation of the cylinder volume and heat capacity ratio are compared. Combustion feedback requires of virtual sensors for the misfire detection, burnt fuel mass and pressure prediction.
Technical Paper

Stochastic Set-Point Optimization for In-Cycle Closed-Loop Combustion Control Operation

2021-04-06
2021-01-0531
The constrained indicated efficiency optimization of the set-point reference for in-cycle closed-loop combustion regulators is investigated in this article. Closed-loop combustion control is able to reduce the stochastic cyclic variations of the combustion by the adjustment of multiple-injections, a pilot and main injection in this work. The set-point is determined by the demand on engine load, burned pilot mass reference and combustion timing. Two strategies were investigated, the regulation of the start of combustion (SOC) and the center of combustion (CA50). The novel approach taken in this investigation consists of including the effect of the controlled variables on the combustion dispersion, instead of using mean-value models, and solve the stochastic optimization problem. A stochastic heat release model is developed for simulation and calibrated with extensive data from a Scania D13 six-cylinder engine. A Monte Carlo approach is taken for the simulations.
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Technical Paper

A Measurement of Fuel Filters’ Ability to Remove Soft Particles, with a Custom-Built Fuel Filter Rig

2020-09-15
2020-01-2130
Biofuel can enable a sustainable transport solution and lower greenhouse gas emissions compared to standard fuels. This study focuses on biodiesel, implemented in the easiest way as drop in fuel. When mixing biodiesel into diesel one can run into problems with solubility causing contaminants precipitating out as insolubilities. These insolubilities, also called soft particles, can cause problems such as internal injector deposits and nozzle fouling. One way to overcome the problem of soft particles is by filtration. It is thus of great interest to be able to quantify fuel filters’ ability to intercept soft particles. The aim of this study is to test different fuel filters for heavy-duty engines and their ability to filter out synthetic soft particles. A custom-built fuel filter rig is presented, together with some of its general design requirements. For evaluation of the efficiency of the filters, fuel samples were taken before and after the filters.
Technical Paper

Impact of Dynamic Exhaust Valve Modelling

2019-12-19
2019-01-2346
A method developed in SAE 2019-01-0058 to correct for deviations from quasi-steady exhaust valve flow is implemented on a single-cylinder GT-Power model and the effects on pumping work and blowdown pulse characteristics are investigated. The valve flow area is always reduced compared to the reference quasi-steady case. It decreases with higher pressure ratios over the valve and increases with higher engines speeds. The reduced flow area increases pumping work with load and engine speed, though primarily with engine speed. The magnitude of the blowdown pulse is reduced and the peak is shifted to a later crank angle.
Technical Paper

Study of Nozzle Fouling: Deposit Build-Up and Removal

2019-12-19
2019-01-2231
The global demand for decreased emission from engines and increased efficiency drives manufactures to develop more advanced fuel injection systems. Today's compression-ignited engines use common rail systems with high injection pressures and fuel injector nozzles with small orifice diameters. These systems are highly sensitive to small changes in orifice diameters since these could lead to deteriorations in spray characteristics, thus reducing engine performance and increasing emissions. Phenomena that could create problems include nozzle fouling caused by metal carboxylates or biofuels. The problems increase with extended use of biofuels. This paper reports on an experimental study of nozzle hole fouling performed on a single-cylinder engine. The aim was to identify if the solubility of the fuel has an effect on deposit build-up and, thus, the reduction in fuelling with associated torque loss, and if there is a probability of regenerating the contaminated injectors.
Journal Article

Characterization of Deposits Collected from Plugged Fuel Filters

2019-09-09
2019-24-0140
Fuel filters serve as a safety belt for modern compression ignition engines. To meet the requirements from environmental regulations these engines use the common rail injection system, which is highly susceptible to contamination from the fuel. Furthermore, the public awareness towards global warming is raising the need for renewable fuels such as biodiesel. An increased fuel variety brings a higher requirement for fuel filters as well. To better understand the process of filtration, awareness of the different possible contaminants from the field is needed. This study used several chemical characterization techniques to examine the deposits from plugged fuel filters collected from the field. The vehicle was run with a biodiesel blend available on the market.
Technical Paper

Heavy-Duty Engine Intake Manifold Pressure Virtual Sensor

2019-04-02
2019-01-1170
Increasing demands for more efficient engines and stricter legislations on exhaust emissions require more accurate control of the engine operating parameters. Engine control is based on sensors monitoring the condition of the engine. Numerous sensors, in a complex control context, increase the complexity, the fragility and the cost of the system. An alternative to physical sensors are virtual sensors, observers used to monitor parameters of the engine thus reducing both the fragility and the production cost but with a slight increase of the complexity. In the current paper a virtual intake manifold cylinder port pressure sensor is presented. The virtual sensor is based on a compressible flow model and on the pressure signal of the intake manifold pressure sensor. It uses the linearized pressure coefficient approach to keep vital performance behaviors while still conserving calibration effort and embedded system memory.
Technical Paper

Dynamic Exhaust Valve Flow 1-D Modelling During Blowdown Conditions

2019-01-15
2019-01-0058
To conduct system level studies on internal combustion engines reduced order models are required in order to keep the computational load below reasonable limits. By its nature a reduced order model is a simplification of reality and may introduce modeling errors. However what is of interest is the size of the error and if it is possible to reduce the error by some method. A popular system level study is gas exchange and in this paper the focus is on the exhaust valve. Generally the valve is modeled as an ideal nozzle where the flow losses are captured by reducing the flow area. As the valve moves slowly compared to the flow the process is assumed to be quasi-steady, i.e. interpolation between steady-flow measurements can be used to describe the dynamic process during valve opening. These measurements are generally done at low pressure drops, as the influence of pressure ratio is assumed to be negligible.
Technical Paper

Knock Sensor Based Virtual Cylinder Pressure Sensor

2019-01-15
2019-01-0040
Typically the combustion in a direct injected compression ignited internal combustion engine is open-loop controlled. The introduction of a cylinder pressure sensor opens up the possibility of a virtual combustion sensor which could enable closed-loop combustion control and thus the potential to counteract effects such as engine part to part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents a virtual cylinder pressure sensor based on the signal from the inexpensive but well proven knock sensor. The method used to convert the knock sensor signal into a pressure estimate included the stages: Phase correcting the raw signal, Filtering the raw signal, Scaling the signal to known thermodynamic laws and provided engine sensors signals and Reconstructing parts of the signal with other known models and assumptions.
Technical Paper

Knock Sensor Based Virtual Combustion Sensor Signal Bias Sensitivity

2018-04-03
2018-01-1154
The combustion in a direct injected internal combustion engine is normally open-loop controlled. The introduction of cylinder pressure sensors enables a virtual combustion sensor which in turn enables closed-loop combustion control, and the possibility to counteract effects such as engine part-to-part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents an investigation of the robustness and the limitation of a knock sensor based virtual combustion sensor. This virtual combustion sensor utilize the common heat release analysis using a knock sensor based virtual cylinder pressure signal. Major virtual sensor error sources in a heavy-duty engine were identified as: the specific heat ratio model, the boost pressure and the crank angle phasing. The virtual sensor errors were quantified in relation to both the measured cylinder pressure and the total virtual sensor error.
Technical Paper

A Comparison of On-Engine Surge Detection Algorithms using Knock Accelerometers

2017-10-08
2017-01-2420
On-engine surge detection could help in reducing the safety margin towards surge, thus allowing higher boost pressures and ultimately low-end torque. In this paper, experimental data from a truck turbocharger compressor mounted on the engine is investigated. A short period of compressor surge is provoked through a sudden, large drop in engine load. The compressor housing is equipped with knock accelerometers. Different signal treatments are evaluated for their suitability with respect to on-engine surge detection: the signal root mean square, the power spectral density in the surge frequency band, the recently proposed Hurst exponent, and a closely related concept optimized to detect changes in the underlying scaling behavior of the signal. For validation purposes, a judgement by the test cell operator by visual observation of the air filter vibrations and audible noises, as well as inlet temperature increase, are also used to diagnose surge.
Technical Paper

Surge Detection Using Knock Sensors in a Heavy Duty Diesel Engine

2017-09-04
2017-24-0050
Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range.
Technical Paper

Gear Whine Noise Investigation of a Bus Rear Axle - Todays Possibilities and Outlook

2017-06-05
2017-01-1820
This paper presents a simulation environment and methodology for noise and vibration analyses of a driven rear axle in a bus application, with particular focus on medium to high frequency range (400 Hz to 3 kHz). The workflow demonstrates structure borne noise and sound radiation analyses. The fully flexible Multi-Body Dynamics (MBD) model - serving to cover the actual mechanical excitation mechanisms and the structural domain - includes geometrical contacts of hypoid gear in the central gear and planetary gear integrated at hubs, considering non-linear meshing stiffness. Contribution of aforementioned gear stages, as well as the propeller shaft universal joint at the pinion axle, on overall axle noise levels is investigated by means of sensitivity analysis. Based on the surface velocities computed at the vibrating axle-housing structure the Wave Based Technique (WBT) is employed to solve the airborne noise problem and predict the radiated sound.
Technical Paper

Pressure Ratio Influence on Exhaust Valve Flow Coefficients

2017-03-28
2017-01-0530
In one dimensional engine simulation software, flow losses over complex geometries such as valves and ports are described using flow coefficients. It is generally assumed that the pressure ratio over the valve has a negligible influence on the flow coefficient. However during the exhaust valve opening the pressure difference between cylinder and port is large which questions the accuracy of this assumption. In this work the influence of pressure ratio on the exhaust valve flow coefficient has been investigated experimentally in a steady-flow test bench. Two cylinder heads, designated A and B, from a Heavy-Duty engine with different valve shapes and valve seat angles have been investigated. The tests were performed with both exhaust valves open and with only one of the two exhaust valves open. The pressure ratio over the exhaust port was varied from 1.1:1 to 5:1. For case A1 with a single exhaust valve open, the flow coefficient decreased significantly with pressure ratio.
Technical Paper

Heat Release Based Virtual Combustion Sensor Signal Bias Sensitivity

2017-03-28
2017-01-0789
Typically, the combustion in an internal combustion engine is open-loop controlled. The introduction of a cylinder pressure sensor opens the possibility to introduce a virtual combustion sensor. This virtual sensor is a possible enabler for closed-loop combustion control and thus the possibility to counteract the effects of engine part to part variation, component ageing and fuel quality diversity. The extent to which these effects can be counteracted is determined by the detection limits of the virtual combustion sensor. To determine the limitation of the virtual combustion sensor, a virtual combustion sensor system was implemented based on a one-zone heat-release analysis, including the signal processing of the pressure sensor input. The typical error sources in a heavy-duty engine were identified and quantified. The virtual combustion sensor system was presented with flawed signals and the sensor’s sensitivities to the errors were quantified.
X