Refine Your Search

Topic

Search Results

Technical Paper

Modeling and Control Strategy for Engine Thermal Management System

2024-04-09
2024-01-2234
In order to study the influence of engine silicone oil fan clutch on the performances of engine cooling system under different control strategies, a model of engine cooling system for light truck is established. The working characteristics of the silicone oil clutch and the measured performance parameters of the cooling system components are taken into account in our proposed model. Modeling methods for different silicone oil fan control strategies are also given. Using the established model, the performance parameters under different vehicle speeds, such as coolant temperature of engine outlet and power consumption of cooling fan, are calculated and analyzed. The in-suite measurement of the engine cooling system is carried out to get the temperatures of engine coolant inlet and outlet from engine ECU. The model is validated by the comparison between the calculation and the measured results.
Technical Paper

A Switching Control Strategy for Multiple Heating Modes Based on the Integrated Thermal Management System of Electric Vehicles

2024-04-09
2024-01-2233
To reduce the heating energy consumption of electric vehicles in winter, a switching control strategy for multiple heating modes formed by three heat sources, including air, motor waste heat, and positive temperature coefficient (PTC) heaters, is designed. Firstly, an integrated thermal management system (ITMS) simulation model for the heat pump air conditioning system, battery thermal management system, and motor thermal management system is established based on the AMESim software. Secondly, the influence of ambient temperature and motor outlet coolant temperature on the heating performance of three cabin heating modes is studied. Specifically, the three cabin heating modes include the pure motor waste heat source heat pump mode, the pure air-source heat pump mode, and the dual heat source heat pump mode with waste heat source and air source. Based on the analysis results, the opening and closing strategies for the three cabin heating modes are discussed.
Technical Paper

A Method for Predicting Fatigue Life of Rubber Isolators at Power Spectral Density Load

2024-04-09
2024-01-2261
Rubber isolators are widely used under random vibrations. In order to predict their fatigue life, a study on the fatigue analysis methodology for rubber isolators is carried out in this paper. Firstly, taking a mount used for isolating air conditioning compressor vibrations as studying example, accelerations versus time of rubber isolator at both sides are acquired for a car under different running conditions. The acceleration in time domain is transformed to frequency domain using the Fourier transform, and the acceleration power spectral density (PSD) is the obtained. Using the PSD as input, fatigue test is carried for the rubber isolator in different temperature and constant humidity conditions. A finite element model of the rubber isolator using ABAQUS is established for estimating fatigue life, and model validity is verified through static characteristic testing. Dynamic responses of the rubber isolator at frequency domain are calculated if a unit load is applied.
Technical Paper

Research on the Flow and Heat Exchange Performance of the Chiller for Electric Vehicles

2024-04-09
2024-01-2412
A set of enthalpy difference test equipment is set up to test flow and heat exchange performance of chillers. The empirical correlations for the convective heat transfer coefficients on the coolant side and the refrigerant side are obtained by fitting the test data, and a two-particle lumped parameter model of the chiller is established. Based on this, the heat exchange performance of the chiller under different operating conditions is given. The effects of herringbone corrugated plate parameters, including angle, pitch, and depth, on flow and heat exchange performance of chillers under different flow rates are further studied. Using the Wilson plot method in test design, the thermal resistance of convective heat transfer on each side is separated from the total thermal resistance to calculate the convective heat transfer coefficient.
Technical Paper

A Method for Identifying Tortuosity, Viscous Characteristic Length and Thermal Characteristic Length of Kapok Mixed Fiber Porous Materials

2023-05-08
2023-01-1058
Tortuosity, viscous characteristic length and thermal characteristic length are three important parameters for estimating the acoustic performance of porous materials, and it is usually measured by ultrasonic measurement technology, which is costly. In this paper, a method for identifying the tortuosity, viscous characteristic length and thermal characteristic length for the porous fiber materials mixed with kapok fiber and two kinds of other fiber materials is proposed. The tortuosity is calculated by using the porosity and high-frequency normal sound absorption coefficient of porous materials. According to the normal sound absorption coefficient curve of porous materials under plane wave incidence, viscous characteristic length and thermal characteristic length are identified through the Johnson-Champoux-Allard-Lafarge (JCAL) model and genetic algorithm by using the measured parameters, the calculated tortuosity and static thermal permeability.
Technical Paper

Study on Driving Forms and Control of Engine Cooling Fan

2023-04-11
2023-01-0816
The influence of engine cooling fan on the working state of engine cooling system under different driving forms and control strategy is studied, and a simulation model of engine thermal management system of a commercial vehicle is established. The model takes into account the measured performance parameters of the cooling system components, the gear shift logic of the transmission, the effect of vehicle speed on the airflow rate of the radiator, and proposes a modeling method for different cooling fan driving forms. The performance parameters such as engine outlet coolant temperature and corresponding cooling fan speed under different vehicle speeds and engine loads are calculated and analyzed by using the established model. The road measurement test of the engine thermal management system under the same working condition was carried out to read the relevant data from the engine ECU and confirm the reliability of the data.
Technical Paper

Calculation of Cooling Fan Blade Deformation and Aerodynamic Performance Based on Fluid-Structure Model

2023-04-11
2023-01-0815
Considering the interaction between fan blades and the surrounding air when a cooling fan rotates, the Fluid-Structure Interaction (FSI) model of the fan is established, and flow rate, static pressure, efficiency versus speed of the fan are calculated and analyzed. The aerodynamic performance of the fan is carried out, and the measured performance parameters are compared with calculated to validate the developed model. Using the established model, the performance of fans with different rotating speeds, diameters and blade installation angles is calculated. The effects of fan speed, diameter and blade installation angle on blade deformation and aerodynamic performance are studied.
Technical Paper

Structural Design and Optimization of Liquid-Cooled Thermal Management Components for Electric Vehicle Batteries

2023-04-11
2023-01-0768
Electric vehicle battery thermal management based on liquid cooling is the mainstream form of cooling for new energy vehicles. According to energy consumption, the system is divided into active cooling system and passive cooling system. The cooling of battery modules in these two cooling systems is carried out by liquid-cooled plate, which is connected in series in the cooling system. Therefore, the design of the liquid-cooled plate has a great impact on the effect of battery heat dissipation. In this paper, considering the advantages of existing liquid-cooled plates, the author proposed a series-parallel hybrid dc channel liquid-cooled plate structure, taking square lithium iron phosphate battery pack as the research object. Finally, the effects of different inlet flows and temperatures of the liquid-cooled plate on the thermal performance of the liquid-cooled plate were investigated by using single factor analysis.
Technical Paper

Design of Muffler in Reducing Hiss Noise of Turbocharged Vehicles

2022-03-29
2022-01-0315
The application of turbochargers in fuel vehicles brings high-frequency noise, which seriously affects the vehicle's ride comfort. The hiss noise of a turbocharged car is improved in this paper. Firstly, under different operating conditions and whether the air intake system is wrapped, the noise in the vehicle cabin and the driver's right ear is tested, and the noise sources and noise characteristics are identified. Then, the acoustic calculation model of the muffler is established, and the transmission loss (TL) of the original muffler behind the turbocharger (MBT) is calculated. The TL of the muffler is measured by the double-load impedance tube method. The finite element calculation model is verified by comparing the TL of muffler calculated with tested. Thirdly, the MBT is redesigned. The improved muffler significantly improves the performance of eliminating high-frequency noise, and its TL beyond 20 dB is expanded to the band of 1600 ~ 3500 Hz.
Technical Paper

Research on Brake Comfort Based on Brake-by-Wire System Control

2022-03-29
2022-01-0912
The vehicle will produce certain shock and vibration during the braking process, which will affect the driving experience of the driver. Aiming at the problems of pitch vibration, longitudinal vibration and shock during the braking process, this paper proposes a planning and following control method for target longitudinal acceleration in post-braking phase, and designs control trigger strategies. Target longitudinal acceleration planning takes minimizing longitudinal shock as the design goal. The following control takes the brake pressure as the control object, and adopts the “feedforward +PID feedback” method to follow the target longitudinal acceleration. Besides, considering the safety of braking process, the trigger condition of control is designed which utilizes BP neural network method to judge whether the control has to be triggered. Based on Simulink software, the simulation model of straight-line braking is established.
Technical Paper

Dynamic Modeling Method of Electric Vehicle Thermal Management System Based on Improved Moving Boundary Method

2022-03-29
2022-01-0183
The thermal management system, which is used to improve driving safety and thermal comfort, is one of the most important systems in electric vehicles. In recent years, researchers have coupled the heat pump system and the battery cooling system to effectively improve the heating COP (Coefficient of Performance). Therefore an accurate dynamic model of thermal management system plays a key role in investigating system performance and optimal control strategies. In this paper, an electric vehicle thermal management system based on four-way valve heat pump system is designed. The moving boundary method is improved by considering the unsteady flow of the external fluid, and then a 13-order dynamic model of the thermal management system is established. Firstly, the control equations of evaporator, condenser and chiller are derived according to the principle of conservation, and then a dynamic model of thermal management system is established in Simulink.
Technical Paper

Fatigue Life Prediction Method for Natural Rubber Material Based on Extreme Learning Machine

2022-03-29
2022-01-0258
Uniaxial fatigue tests of rubber dumbbell specimens under different mean and amplitude of strain are carried out. An Extreme Learning Machine (ELM) model optimized by Dragonfly Algorithm (DA) is proposed to predict the fatigue life of rubber based on measured rubber fatigue life data. Mean and amplitude of strain and measured rubber fatigue life are taken as input variables and output variables respectively in DA-ELM model. For comparison, genetic algorithm (GA) and particle swarm optimization (PSO) are used to optimize ELM parameters, and GA-ELM and PSO-ELM models are established. The comparison results show that DA-ELM model performs better in predicting the fatigue life of rubber with least dispersion. The coefficients of determination for the training set and test set are 99.47% and 99.12%, respectively. In addition, a life prediction model equivalent strain amplitude as damage parameter is introduced to further highlight the superiority of DA-ELM model.
Technical Paper

A Study on Editing Method of Road Load Spectrum of Automobile Rubber Isolator Using Time-Frequency Domain Methods

2022-03-29
2022-01-0272
In order to enhance the efficiency of durability testing of automobile parts, a time-frequency domain accelerated editing method of road load time series of rubber mount on powertrain was discussed. Based on Stockwell Transform method and Accumulative Power Spectral Density, a new time-frequency domain accelerated editing method (ST-APSD) was proposed. The accumulative power spectral density was obtained by ST of the load time series signal of automobile powertrain rubber mounting force which is acquired by the real vehicle in the test field. Based on the accumulative power spectral density, the threshold value was proposed to identify and delete the small damage load fragments, and then the acceleration spectrum was obtained.
Technical Paper

A Method for Acquiring and Editing the Load Spectrum of the Drive-Shaft System for an All-Terrain Vehicle

2022-03-29
2022-01-0268
The durability road test of a vehicle is an important test to verify the reliability of vehicle components. In order to carry out the durability bench test for drive shaft systems of all-terrain vehicles, a method for acquiring time domain signals of articulation angles of the CVJ, input torque, and rotational speeds of drive shaft systems is proposed. The acquired load spectrum of drive shaft systems is preprocessed including deleting small amplitudes, de-drifting, deburring, filtering, etc. Peaks and valleys are extracted from the preprocessed load spectrum. Based on the graphic method and the estimator stabilization method, the upper and lower thresholds of the time domain extrapolation of the load spectrum are determined, and then the peaks and valleys excesses that exceed the upper and lower thresholds are extracted. The generalized pareto distribution function is used to fit the distribution of peaks and valleys excesses.
Technical Paper

Modeling and Analysis of the Hysteresis Behavior of the Tensioner

2022-03-29
2022-01-0609
The tensioner of the engine front end accessory drive system was taken as a study object, and the mechanical structure and working principle of the automatic tensioner were analyzed. The hysteresis behavior test of tensioner torque-angular displacement was carried out, and the effects of different excitation frequencies and excitation amplitudes on the hysteresis behavior of the tensioner were analyzed. According to the modified Dahl hysteresis model, the model parameters of the tensioner was identified. Based on the identified model parameters, the hysteresis behavior of the tensioner was calculated, and the calculation model accuracy was verified with the tested results. The influence of the hysteresis curve transition area exponent on the tensioner behavior was studied. The dynamic behavior of the engine front end accessory drive system was simulated using the simulation software.
Journal Article

Numerical Investigation on the Internal Flow Field of Electronic Expansion Valve as the Throttle Element

2022-03-29
2022-01-0318
As one of the key components of the heat pump system, the electronic expansion valve mainly plays the role of throttling and reducing pressure in the heat pump system. The refrigerant flowing through the orifice will produce complex phase change. It is of great significance to study the internal flow field by means of CFD calculations. Firstly, a three-dimensional fluid model is established and the mesh is divided. Secondly, the phase change model is selected, the material is defined and the boundary conditions are determined. According to the principle of the fluid passing through thin-walled small holes, the flow characteristics of electronic expansion valve are theoretically analyzed. Then the flow characteristics of expansion valve are numerically calculated, and a bench for testing mass flow rate of the expansion valve is built. Then the theoretical value, CFD value and experimental value are compared to verify the correctness of the established three-dimensional fluid model.
Technical Paper

Modeling and Simulation Analysis of Electric Vehicle Thermal Management System Based on Distributed Parameter Method

2022-03-29
2022-01-0211
The distributed parameter method is used to establish the dynamic simulation model of the electric vehicle thermal management system and various parts, and the finite difference method is used to solve the model. A thermal management system model with same structure is established by AMESIM, and the accuracy of the dynamic simulation model is verified by comparing the deviation of the calculation result between this dynamic simulation model and AMESIM. Based on the established model, the influence of expansion valve opening on the temperature of battery pack and the influence on the heating comfort of the cabin were studied. A control strategy for the rapid cooling of the battery pack was proposed. The results show that the model established by the distributed parameter method provides quite well agreement with commercial equivalent software and can well reflect the flow state of the refrigerant in different zones of the same component.
Technical Paper

Experimental Study on Hydraulic Pressure Feedforward and Feedback PID Control of I-EHB System with Friction Disturbance

2021-04-06
2021-01-0979
This paper designs the important components and structure of the integrated electro-hydraulic brake system (I-EHB). Firstly, the simplified linear system is modeled, and the transfer function without considering the nonlinear disturbance such as system friction is derived, and the correctness of the linear system is preliminarily verified by AMESim. Then set up the I-EHB system test bench, and use the Stribeck friction model to identify the friction torque parameters in the static and kinetic friction stages of the system to obtain a more accurate friction model. Finally, based on the I-EHB system model of friction disturbance, a pressure-speed-current three-loop cascade PID controller is designed, and a feedforward controller based on the system model is added to form the control structure of “pressure feedforward compensation + pressure-speed-current closed-loop cascade PID”.
Technical Paper

Study on the Influence of Air Suspension Levelling Valve Charging and Discharging Characteristics on Heavy Truck Roll Stability

2021-04-06
2021-01-0980
Roll stability is an important attribute which must be accounted for in heavy trucks. In order to analyze the anti-roll performance of the suspension in the early period of development, engineers will generally use Multi Body Dynamics (MBD) simulation software which can save time in the product development cycle. However, air suspension employs levelling valves to adjust the height by charging and discharging air springs. The air spring is typically modeled as a closed container in the simulation; the stiffness change of the air spring caused by the levelling valve is not considered. In this paper, an air suspension with levelling valves model integrated into the multi-body dynamic model of a 6�4 heavy truck is built with a co-simulation technique to investigate the influence of three types of levelling valves arrangement on the roll performance of the suspension under two typical conditions.
Journal Article

Research on Influencing Factors of Sound Absorption Coefficient in Reverberation Chamber

2021-04-06
2021-01-0359
In the automotive industry, testing the sound absorption coefficient of acoustic materials through reverberation chambers has been widely used. The advantage of this method is that sound waves are incident on the surface of acoustic materials randomly, which is more in line with actual engineering. At present, most of the reverberation chamber design and construction refers to the international standard ISO 354-2003. However, although the design indicators of the reverberation chamber have already met the requirements of the standard ISO 354-2003, there are still some differences between the test results of different reverberation chambers on the same group of samples to be tested, and sometimes the differences are so big they affect the engineering applications. In this paper, the sound absorption coefficients of the same group of samples in different reverberation chambers are tested, and there are some differences in the sound absorption coefficients.
X