Refine Your Search

Topic

Search Results

Technical Paper

Parameter Identification of Constitute Model of Glass Fiber Reinforced Polypropylene under Adiabatic Temperature Rise Loads

2024-04-09
2024-01-2355
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective.
Technical Paper

A Method for Predicting Fatigue Life of Rubber Isolators at Power Spectral Density Load

2024-04-09
2024-01-2261
Rubber isolators are widely used under random vibrations. In order to predict their fatigue life, a study on the fatigue analysis methodology for rubber isolators is carried out in this paper. Firstly, taking a mount used for isolating air conditioning compressor vibrations as studying example, accelerations versus time of rubber isolator at both sides are acquired for a car under different running conditions. The acceleration in time domain is transformed to frequency domain using the Fourier transform, and the acceleration power spectral density (PSD) is the obtained. Using the PSD as input, fatigue test is carried for the rubber isolator in different temperature and constant humidity conditions. A finite element model of the rubber isolator using ABAQUS is established for estimating fatigue life, and model validity is verified through static characteristic testing. Dynamic responses of the rubber isolator at frequency domain are calculated if a unit load is applied.
Technical Paper

Fatigue Life Analysis Methods for Rolling Lobe Air Spring

2024-04-09
2024-01-2259
The fatigue prediction model of an air spring based on the crack initiation method is established in this study. Taking a rolling lobe air spring with an aluminum casing as the studying example, a finite element model for analyzing force versus displacement is developed. The static stiffness and dimensional parameters of limit positions are calculated and analyzed. The influence of different modeling methods of air springs bellow are compared and analyzed. Static stiffness measurement of an air spring is conducted, and the calculation results and the measured results of the static stiffness are compared. It is shown that the relative error of the measured stiffness and calculated stiffness is within 1%. The Abaqus post-processing stage is redeveloped in Python language.
Technical Paper

Dynamic Performance Optimization of Ball Joints with Cross Groove for Automotive Driveshaft System

2024-04-09
2024-01-2438
The ball joint with cross groove offers both angular and plunging motion. When transmitting the same torque, the cross groove ball joint is lighter than other plunging Constant Velocity Joints (CVJs). It is crucial for the design of the joint and enhancing the contact fatigue life of the raceway to accurately estimate component loads of the ball joints with cross groove. In this study, the transmission efficiency of the joint and the peak value of contact force between ball and the track are used as evaluation indexes for characterizing dynamic performance of the joint. A multibody dynamic model of the joint is established to calculate its dynamic performance. In the model, the contact properties and friction characteristics of the internal structures were modeled, and a nonlinear equivalent spring and damping model was adopted for estimating the contact force. The transmission efficiency loss of the cross groove joint was measured and compared with the calculated values.
Technical Paper

A Method for Identifying Tortuosity, Viscous Characteristic Length and Thermal Characteristic Length of Kapok Mixed Fiber Porous Materials

2023-05-08
2023-01-1058
Tortuosity, viscous characteristic length and thermal characteristic length are three important parameters for estimating the acoustic performance of porous materials, and it is usually measured by ultrasonic measurement technology, which is costly. In this paper, a method for identifying the tortuosity, viscous characteristic length and thermal characteristic length for the porous fiber materials mixed with kapok fiber and two kinds of other fiber materials is proposed. The tortuosity is calculated by using the porosity and high-frequency normal sound absorption coefficient of porous materials. According to the normal sound absorption coefficient curve of porous materials under plane wave incidence, viscous characteristic length and thermal characteristic length are identified through the Johnson-Champoux-Allard-Lafarge (JCAL) model and genetic algorithm by using the measured parameters, the calculated tortuosity and static thermal permeability.
Technical Paper

Sound Transmission Loss of Acoustic Metamaterial with Lightweight Frame and Hard Membrane-Like Material

2023-05-08
2023-01-1057
To reduce the noise in the frequency range of 100Hz~1000Hz, a metamaterial structure composed of lightweight frame, hard membrane-like material and added mass is proposed in this paper. The advantage of this structure is that it is lightweight and the membrane-like material does not need to be stressed in advance. Finite element method (FEM) and experiment are used to investigate the sound transmission loss (STL) performance of the metamaterial structure. The results show that the peak STL is caused by the local resonance of the added mass and the membrane-like material. The valley versus frequency results from the resonance frequencies of metamaterial structure, and it is divided into three resonance frequencies: resonance frequencies from added mass, membrane-like material and frame.
Technical Paper

Parameters Identification of Mooney-Rivlin Model for Rubber Mount Based on Surrogate Model

2023-05-08
2023-01-1150
As an important vibration damping element in automobile, the rubber mount can effectively reduce the vibration transmitted from the engine to the frame. In this study, a method of parameters identification of Mooney-Rivlin model by using surrogate model was proposed to more accurately describe the mechanical behavior of mount. Firstly, taking the rubber mount as the research object, the stiffness measurement was carried out. And then the calculation model of the rubber mount was established with Mooney-Rivlin model. Latin hypercube sampling was used to obtain the force and displacement calculation data in different directions. Then, the parameters of the Mooney-Rivlin model were taken as the design variables. And the error of the measured force-displacement curve and the calculated force-displacement curve was taken as the system response. Two surrogate models, the response surface model and the back-propagation neural network, were established.
Technical Paper

Material Parameter Identification Method for Rubber Mount Constitutive Equation

2023-05-08
2023-01-1154
As an important vibration damping element in automobile industries, the vibration transmitted from the engine to the frame can be reduced effectively because of rubber mount. The influence of preload on the static characteristics of rubber mount and the constitutive parameters identification of Mooney-Rivlin model under preload were studied. Firstly, a test rig for stiffness measurement of rubber mount under preload was designed and the influence of preload on the force versus displacement of mount was studied. Then, the model for estimating force versus displacement of rubber mount was established. The response surface model for parameters identification was established. And the identification method for estimating parameters of Mooney-Rivlin model of rubber mount was proposed with the crow search algorithm. Taking the rubber mount as the research object and taking the parameters of Mooney-Rivlin model as the variables.
Technical Paper

Study on Arrangement of TIG Weld Seams of 6061-T6 Aluminum Alloy

2023-04-11
2023-01-0939
Welding deformation of aluminum alloy is an urgent problem to be solved, it affects the performance and service life of welding products. In this research, in order to compute welding deformation and residual stress, a finite element model of 6061-T6 aluminum alloy was established. The efficiency and the accuracy of the welding residual stress calculation and the welding deformation were significantly improved. By comparing the temperature field and the displacement field of simulation and experiment, the finite element model was validated. Through finite element analysis, Heat input and welding times have important effects on welding deformation and residual stress was found. The welding deformation law and the residual stress distribution law were proposed, after cooling of the welding seams, the plates collapsed to the other side of the heat source along the vertical direction, the welding deformation tendency was heightened by double-sided welding.
Technical Paper

Structural Design and Optimization of Liquid-Cooled Thermal Management Components for Electric Vehicle Batteries

2023-04-11
2023-01-0768
Electric vehicle battery thermal management based on liquid cooling is the mainstream form of cooling for new energy vehicles. According to energy consumption, the system is divided into active cooling system and passive cooling system. The cooling of battery modules in these two cooling systems is carried out by liquid-cooled plate, which is connected in series in the cooling system. Therefore, the design of the liquid-cooled plate has a great impact on the effect of battery heat dissipation. In this paper, considering the advantages of existing liquid-cooled plates, the author proposed a series-parallel hybrid dc channel liquid-cooled plate structure, taking square lithium iron phosphate battery pack as the research object. Finally, the effects of different inlet flows and temperatures of the liquid-cooled plate on the thermal performance of the liquid-cooled plate were investigated by using single factor analysis.
Technical Paper

Design of a Car Battery Box with Combined Steel Stamped and Aluminum Extruded Process

2023-04-11
2023-01-0607
In the manufacturing of battery boxes using the aluminum extruded process, poor consistency of products and a short life of the die for making aluminum structural sections are usually observed. A new method of producing battery boxes is proposed that combines steel stamped and aluminum extruded process. This paper first describes the design requirements for a battery box using a new process, and several important issues such as weld seam arrangement and error proofing in the manufacturing process are discussed. To address the issue of weld seam arrangement, the following three principles should be considered in the design: These principles include that the profile lap angle should be above 90°, three or more beams should not be lapped too closely together, and multiple brackets in close proximity should be designed as one unit.
Technical Paper

Mechanical Failure Modes of Prismatic Lithium-ion Battery Separator

2022-12-16
2022-01-7119
As the power of electric vehicles (EVs), lithium-ion batteries (LIBs) are subjected to a variety of mechanical loads during electrochemical operation. Under this operating environment, lithium-ion batteries are at risk of internal short circuit, thermal runaway and even fire, threatening the safety of electric vehicles. The purpose of this paper is to investigate the mechanical behaviors and failure mechanisms of the battery separator to improve the safety of lithium-ion batteries under mechanical loads. In this study, uniaxial tensile, through-thickness compression and biaxial punch tests were performed to characterize two types of separators, dry-processed polypropylene (PP) separators and wet-processed ceramic-coated separators, and to analyze and compare their mechanical properties and failure modes. The comprehensive mechanical tests show that the failure modes of the different separator types are different, with the more anisotropic separator having more complex failure modes.
Technical Paper

A Method for Calculating High Frequency Dynamic Characteristics of Rubber Isolators under Different Preloads

2022-03-29
2022-01-0307
Because the power unit of electric vehicle has large torque, the rubber mount of electric vehicle is fully compressed under the condition of full throttle acceleration. When designing the mount of electric vehicle, the dynamic-to-static stiffness ratio of mount under the case should be as low as possible to improve the vibration isolation rate of the mount. In this paper, a method for calculating the high frequency dynamic characteristics of rubber isolators under different preloads is presented. Firstly, the dynamic characteristics of rubber specimens under various shear pre-strains were tested. The test results show that the dynamic stiffness of specimen decreases at first and then increases with the increase of shear strain. The viscoelastic parameters of rubber in frequency domain under different pre-strain were identified according to the experimental data. Secondly, a finite element modeling method was proposed.
Technical Paper

Research on Brake Comfort Based on Brake-by-Wire System Control

2022-03-29
2022-01-0912
The vehicle will produce certain shock and vibration during the braking process, which will affect the driving experience of the driver. Aiming at the problems of pitch vibration, longitudinal vibration and shock during the braking process, this paper proposes a planning and following control method for target longitudinal acceleration in post-braking phase, and designs control trigger strategies. Target longitudinal acceleration planning takes minimizing longitudinal shock as the design goal. The following control takes the brake pressure as the control object, and adopts the “feedforward +PID feedback” method to follow the target longitudinal acceleration. Besides, considering the safety of braking process, the trigger condition of control is designed which utilizes BP neural network method to judge whether the control has to be triggered. Based on Simulink software, the simulation model of straight-line braking is established.
Technical Paper

Dynamic Modeling Method of Electric Vehicle Thermal Management System Based on Improved Moving Boundary Method

2022-03-29
2022-01-0183
The thermal management system, which is used to improve driving safety and thermal comfort, is one of the most important systems in electric vehicles. In recent years, researchers have coupled the heat pump system and the battery cooling system to effectively improve the heating COP (Coefficient of Performance). Therefore an accurate dynamic model of thermal management system plays a key role in investigating system performance and optimal control strategies. In this paper, an electric vehicle thermal management system based on four-way valve heat pump system is designed. The moving boundary method is improved by considering the unsteady flow of the external fluid, and then a 13-order dynamic model of the thermal management system is established. Firstly, the control equations of evaporator, condenser and chiller are derived according to the principle of conservation, and then a dynamic model of thermal management system is established in Simulink.
Technical Paper

Fatigue Life Prediction Method for Natural Rubber Material Based on Extreme Learning Machine

2022-03-29
2022-01-0258
Uniaxial fatigue tests of rubber dumbbell specimens under different mean and amplitude of strain are carried out. An Extreme Learning Machine (ELM) model optimized by Dragonfly Algorithm (DA) is proposed to predict the fatigue life of rubber based on measured rubber fatigue life data. Mean and amplitude of strain and measured rubber fatigue life are taken as input variables and output variables respectively in DA-ELM model. For comparison, genetic algorithm (GA) and particle swarm optimization (PSO) are used to optimize ELM parameters, and GA-ELM and PSO-ELM models are established. The comparison results show that DA-ELM model performs better in predicting the fatigue life of rubber with least dispersion. The coefficients of determination for the training set and test set are 99.47% and 99.12%, respectively. In addition, a life prediction model equivalent strain amplitude as damage parameter is introduced to further highlight the superiority of DA-ELM model.
Technical Paper

A Study on Editing Method of Road Load Spectrum of Automobile Rubber Isolator Using Time-Frequency Domain Methods

2022-03-29
2022-01-0272
In order to enhance the efficiency of durability testing of automobile parts, a time-frequency domain accelerated editing method of road load time series of rubber mount on powertrain was discussed. Based on Stockwell Transform method and Accumulative Power Spectral Density, a new time-frequency domain accelerated editing method (ST-APSD) was proposed. The accumulative power spectral density was obtained by ST of the load time series signal of automobile powertrain rubber mounting force which is acquired by the real vehicle in the test field. Based on the accumulative power spectral density, the threshold value was proposed to identify and delete the small damage load fragments, and then the acceleration spectrum was obtained.
Technical Paper

A Method for Acquiring and Editing the Load Spectrum of the Drive-Shaft System for an All-Terrain Vehicle

2022-03-29
2022-01-0268
The durability road test of a vehicle is an important test to verify the reliability of vehicle components. In order to carry out the durability bench test for drive shaft systems of all-terrain vehicles, a method for acquiring time domain signals of articulation angles of the CVJ, input torque, and rotational speeds of drive shaft systems is proposed. The acquired load spectrum of drive shaft systems is preprocessed including deleting small amplitudes, de-drifting, deburring, filtering, etc. Peaks and valleys are extracted from the preprocessed load spectrum. Based on the graphic method and the estimator stabilization method, the upper and lower thresholds of the time domain extrapolation of the load spectrum are determined, and then the peaks and valleys excesses that exceed the upper and lower thresholds are extracted. The generalized pareto distribution function is used to fit the distribution of peaks and valleys excesses.
Journal Article

Modeling Method of Dynamic Characteristics of Hydraulic Damping Rubber Isolator

2022-03-29
2022-01-0282
The dynamic characteristics of hydraulic damping rubber isolators (such as hydraulic bushing and hydraulic mount) are related to excitation amplitude and frequency. Based on the lumped parameter model of hydraulic damping rubber isolator, a unified linear model of complex stiffness is derived and its deficiency is pointed out. Based on the derived linear model, this paper considers the nonlinear damping of inertia channel and the nonlinear stiffness of the upper chamber of the hydraulic damping rubber isolator, so as to establish a new nonlinear model, which can reflect the amplitude and frequency dependence of the dynamic characteristics of the hydraulic damping rubber isolator. Finally, the nonlinear model is used to analyze the dynamic response of hydraulic damping rubber isolator under harmonic excitation and random excitation respectively, and the results are compared with the test results.
Technical Paper

Research on Sound Insulation Characteristics and Application of Acoustic Metamaterials

2022-03-29
2022-01-0343
In the field of low-frequency noise control, the acoustic metamaterials have received extensive attention from researchers. However, the existing work mainly focuses on small structures with fixed boundaries, which is quite different from engineering applications. Based on the membrane-type acoustic metamaterials, this paper uses a rigid thin plate to replace the tensioned membrane, design and manufacture of two new types of local resonance structure and studies their sound insulation properties. First, the metamaterial samples with a small size of 100mm in diameter and a large-size square with a side length of 506mm were produced, and the sound TL of the two was tested through the impedance tube and the reverberation chamber-anechoic chamber, respectively. The results show that the new structure can form an obvious sound insulation frequency band at low frequencies. Based on the finite element method, a metamaterial acoustic transmission loss calculation model is established.
X