Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluation of Indrio’s Ammonia Sensor using a Diesel Fuel Based Burner Platform

2023-04-11
2023-01-0383
This program involved the detailed evaluation of a novel laser-based in-exhaust ammonia sensor using a diesel fuel-based burner platform integrated with an ammonia injection system. Test matrix included both steady-state modes and transient operation of the burner platform. Steady-state performance evaluation included tests that examined impact of exhaust gas temperature, gas velocity and ammonia levels on sensor response. Furthermore, cross sensitivity of the sensor was examined at different levels of NOX and water vapor. Transient tests included simulation of the FTP test cycles at different ammonia and NOX levels. A Fourier transform infrared (FTIR) spectrometer as well as NIST traceable ammonia gas bottles (introduced into the exhaust stream via a calibrated flow controller) served as references for ammonia measurement.
Technical Paper

Continuous Oil Consumption Measurement Using Laser Induced Breakdown Spectroscopy

2022-03-29
2022-01-0581
This paper describes a new method for measuring oil consumption using laser induced breakdown spectroscopy (LIBS). LIBS focuses a high energy laser pulse on a sample to form a transient plasma. As the plasma cools, each element produces atomic emission lines which can be used to identify and quantify the elements present in the original sample. In this work, a LIBS system was used on simulated engine exhaust with a focus on quantifying the inorganic components (termed ash) of the particulate emissions. Because some of the metallic elements in the ash almost exclusively result from lube oil consumption, their concentrations can also be correlated to an oil consumption rate. Initial testing was performed using SwRI’s Exhaust Composition Transient Operation Laboratory®(ECTO-Lab®) burner system so that oil consumption and ash mass could be precisely controlled.
Journal Article

Development of Steady State NO2:NOX Control via an Independent Nitric Decomposition System for the Exhaust Composition Transient Operation Laboratory

2022-03-29
2022-01-0548
Southwest Research Institute (SwRI) utilizes the burner-based Exhaust Composition Transient Operation LaboratoryTM (ECTO-Lab) to accurately simulate transient engines and replicate real exhaust that is produced by light and heavy-duty engines for aftertreatment aging and evaluations. This system can generate and dose NOX over transient cycles from a range of 20 ppm to 1200 ppm where the NOX is generated by the in-situ decomposition and combustion of a fuel-bound, nitrogen containing compound. During the combustion and decomposition of the nitrogen containing compound over 95 % of the NOX generated is in the form of NO. To authentically simulate exhaust gases, it is necessary to account for the distribution of the NO to the NO2. Since previous work has established that the decomposition of nitric acid can be utilized as a method to generate NO2, the objective of this project was to develop control of NO and NO2 within SwRI’s ECTO-Lab through the decomposition of nitric acid.
Technical Paper

Development of a Novel Dynamically Loaded Journal Bearing Test Rig

2021-09-21
2021-01-1218
In this work, a dynamically loaded hydrodynamic journal bearing test rig is developed and introduced. The rig is a novel design, using a hydraulic actuator with fast acting spool valves to apply load to a connecting rod. This force is transmitted through the connecting rod to the large end bearing which is mounted on a spinning shaft. The hydraulic actuator allows for fully variable control and can be used to apply either static load in compression or tension, or dynamic loading to simulate engine operation. A variable speed electric motor controls shaft speed and is synchronized to the hydraulic actuator to accurately simulate loading to represent all four engine strokes. A high precision torque meter enables direct measurements of friction torque, while shaft position is measured via a high precision encoder.
Technical Paper

Evaluation of Gasoline Additive Packages to Assess Their Ability to Clean Up Intake Valve Deposits in Automotive Engines

2019-04-02
2019-01-0261
The majority of passenger car and light-duty trucks, especially in North America, operate using port-fuel injection (PFI) engines. In PFI engines, the fuel is injected onto the intake valves and then pulled into the combustion chamber during the intake stroke. Components of the fuel are unstable in this environment and form deposits on the upstream face of the intake valve. These deposits have been found to affect a vehicle’s drivability, emissions and engine performance. Therefore, it is critical for the gasoline to be blended with additives containing detergents capable of removing the harmful intake valve deposits (IVDs). Established standards are available to measure the propensity of IVD formation, for example the ASTM D6201 engine test and ASTM D5500 vehicle test.
Technical Paper

Combined Benefits of Variable Valve Actuation and Low-Pressure EGR on SI Engine Efficiency Part 2: High Load

2019-04-02
2019-01-0237
The abnormal autoignition of the unburned gas, namely knock, at high loads is a major challenge for modern spark ignited engines. Knock prevents the application of high compression ratios due to the increased unburned gas temperature, and it becomes increasingly severe for downsized engines with high specific powers. The current paper reports on the potential of utilizing continuously variable valve actuation (VVA) and low-pressure exhaust gas recirculation (EGR) to reduce knock tendency at high loads. Five speed / load points were investigated on a 1.6 L turbocharged gasoline direct injection engine. The brake specific fuel consumption (BSFC) response to the valve phasing and the intake valve lift was investigated with the design of experiment (DoE) approach. The DoE was conducted using a Box-Behnken surface response model. The results exhibited insensitive response of BSFC to intake valve lift and overlap.
Technical Paper

Review of the Computer Science and Engineering Solutions for Model Sharing and Model Co-Simulation

2019-03-19
2019-01-1352
The process of developing, parameterizing, validating, and maintaining models occurs within a wide variety of tools, and requires significant time and resources. To maximize model utilization, models are often shared between various toolsets and experts. One common example is sharing aircraft engine models with airframers. The functionality of a given model may be utilized and shared with a secondary model, or multiple models may run collaboratively through co-simulation. There are many technical challenges associated with model sharing and co-simulation. For example, data communication between models and tools must be accurate and reliable, and the model usage must be well-documented and perspicuous for a user. This requires clear communication and understanding between computer scientists and engineers. Most often, models are developed by engineers, whereas the tools used to share the models are developed by computer scientists.
Technical Paper

The Impact of Engine Operating Conditions on Reformate Production in a D-EGR Engine

2017-03-28
2017-01-0684
Dedicated EGR has shown promise for achieving high efficiency with low emissions [1]. For the present study, a 4-cylinder turbocharged GDI engine which was modified to a D-EGR configuration was used to investigate the impact of valve phasing and different injection strategies on the reformate production in the dedicated cylinder. Various levels of positive valve overlap were used in conjunction with different approaches for dedicated cylinder over fueling using PFI and DI fuel systems. Three speed-load combinations were studied, 2000 rpm 4 bar IMEPg, 2000 rpm 12 bar IMEPg, and 4000 rpm 12 bar IMEPg. The primary investigation was conducted to map out the dedicated cylinders' performance at the operating limits of intake and exhaust cam phasing. In this case, the limits were defined as conditions that yielded either no reformate benefit or led to instability in the dedicated cylinder.
Journal Article

Extension of Analytical Methods for Detailed Characterization of Advanced Combustion Engine Emissions

2016-10-17
2016-01-2330
Advanced combustion strategies used to improve efficiency, emissions, and performance in internal combustion engines (IC) alter the chemical composition of engine-out emissions. The characterization of exhaust chemistry from advanced IC engines requires an analytical system capable of measuring a wide range of compounds. For many years, the widely accepted Coordinating Research Council (CRC) Auto/Oil procedure[1,2] has been used to quantify hydrocarbon compounds between C1 and C12 from dilute engine exhaust in Tedlar polyvinyl fluoride (PVF) bags. Hydrocarbons greater than C12+ present the greatest challenge for identification in diesel exhaust. Above C12, PVF bags risk losing the higher molecular weight compounds due to adsorption to the walls of the bag or by condensation of the heavier compounds. This paper describes two specialized exhaust gas sampling and analytical systems capable of analyzing the mid-range (C10 - C24) and the high range (C24+) hydrocarbon in exhaust.
Technical Paper

Comparison of Hydrocarbon Measurement with FTIR and FID in a Dual Fuel Locomotive Engine

2016-04-05
2016-01-0978
Exhaust emissions of non-methane hydrocarbon (NMHC) and methane were measured from a Tier 3 dual-fuel demonstration locomotive running diesel-natural gas blend. Measurements were performed with the typical flame ionization detector (FID) method in accordance with EPA CFR Title 40 Part 1065 and with an alternative Fourier-Transform Infrared (FTIR) Spectroscopy method. Measurements were performed with and without oxidation catalyst exhaust aftertreatment. FTIR may have potential for improved accuracy over the FID when NMHC is dominated by light hydrocarbons. In the dual fuel tests, the FTIR measurement was 1-4% higher than the FID measurement of. NMHC results between the two methods differed considerably, in some cases reporting concentrations as much as four times those of the FID. However, in comparing these data it is important to note that the FTIR method has several advantages over the FID method, so the differences do not necessarily represent error in the FTIR.
Technical Paper

Port Design for Charge Motion Improvement within the Cylinder

2016-04-05
2016-01-0600
The engine intake process governs many aspects of the flow within the cylinder. The inlet valve is the minimum area, so gas velocities at the valve are the highest velocities seen. Geometric configuration of the inlet ports and valves, and the opening schedule create organized large scale motions in the cylinder known as swirl and tumble. Good charge motion within the cylinder will produce high turbulence levels at the end of the compression stroke. As the turbulence resulting from the conversion energy of the inlet jet decays fast, the strategy is to encapsulate some of the inlet jet in the organized motions. In this work the baseline port of a 2.0 L gasoline engine was modified by inserting a tumble plate. The work was done in support of an experimental study for which a new single-cylinder research engine was set up to allow combustion system parameters to be varied in steps over an extensive range. Tumble flow was one such parameter.
Technical Paper

Parametric Study and Secondary Circuit Model Calibration Using Spark Calorimeter Testing

2015-04-14
2015-01-0778
The presented work describes how spark calorimeter testing was used for parametric study and secondary circuit model calibration. Tests were conducted at different pressures, sparkplug gaps and supplied primary energies. The conversion efficiency increases and the spark duration decreases when the gas pressure or the sparkplug gap size is increased. Both gas pressure and sparkplug gas size increase the positive column voltage which represents part of the electrical energy delivered to the gas. The opposite direction occurs when the supplied primary energy is increased. The testing results were then used to calibrate the secondary circuit model which consisted of the sparkplug, the sparkplug gap and the secondary wiring. A step-by-step method was used to calibrate the three constants of the model to match the calculated delivered energy with test data during arc / glow phase.
Technical Paper

Impact of Swirl Ratio on Combustion Performance of a Non-Pent Roof Combustion Chamber Engine

2015-04-14
2015-01-0743
In response to the sensitivity to diesel aftertreatment costs in the medium duty market, a John Deere 4045 was converted to burn gasoline with high levels of EGR. This presented some unique challenges not seen in light duty gasoline engines as the flat head and diesel adapted ports do not provide optimum in-cylinder turbulence. As the bore size increases, there is more opportunity for knock or incomplete combustion to occur. Also, the high dilution used to reduce knock slows the burn rates. In order to speed up the burn rates, various levels of swirl were investigated. A four valve head with different levels of port masking showed that increasing the swirl ratio decreased the combustion duration, but ultimately ran into high pumping work required to generate the desired swirl. A two valve head was used to overcome the breathing issue seen in the four valve head with port masking.
Technical Paper

Miller Cycle Application to the Scuderi Split Cycle Engine (by Downsizing the Compressor Cylinder)

2012-04-16
2012-01-0419
The Scuderi engine is a split cycle design that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This configuration provides potential benefits to the combustion process, as well as presenting some challenges. A Miller cycle configuration of the engine is made possible by turbocharging with a downsized compressor cylinder and has been modeled in 1-dimensional cycle simulation software.
Journal Article

Development of a Solid Exhaust Particle Number Measurement System Using a Catalytic Stripper Technology

2011-04-12
2011-01-0635
A solid particle number measurement system (SPNMS) was developed using a catalytic stripper (CS) technology instead of an evaporation tube (ET). The ET is used in commercially available systems, compliant with the Particle Measurement Program (PMP) protocol developed for European Union (EU) solid particle number regulations. The catalytic stripper consists of a small core of a diesel exhaust oxidation catalyst. The SPNMS/CS met all performance requirements under the PMP protocol. It showed a much better performance in removing large volatile tetracontane particles down to a size well below the PMP lower cut-size of 23 nm, compared to a SPNMS equipped with an ET instead of a CS. The SPNMS/CS also showed a similar performance to a commercially available system when used on a gasoline direct injection (GDI) engine exhaust.
Journal Article

Scuderi Split Cycle Fast Acting Valvetrain: Architecture and Development

2011-04-12
2011-01-0404
The Scuderi internal combustion engine is characterized by a split cycle that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This split cycle also has an additional high pressure “crossover” gas transfer phase versus the conventional 4-stroke cycle, during which the charge air is moved from the first to the second cylinder. The intake/compression, power/exhaust and crossover events are repeated every revolution, i.e. over two cycles, with a small phase angle between the two cylinders. The separate cylinders enable opportunities for improved combustion and the possibility for pneumatic hybridization of the engine. This paper describes the technical challenges posed by the actuation of the crossover valves in the Scuderi Split Cycle research engine.
Technical Paper

Evaluation of Hydraulic Efficiency Using High-Shear Viscosity Fluids

2010-10-25
2010-01-2178
Fossil fuel consumption is a significant factor in terms of both economic and environ-mental impact of on- and off-highway systems. Because fuel consumption can be directly tied to equipment efficiency, gains in efficiency can lead to reduction in operating costs as well as conservation of nonrenewable resources. Fluid performance has a direct effect on the efficiency of a hydraulic system. A procedure has been developed for measuring a fluid's effect on the degree to which mechanical power is efficiently converted to hydraulic power in pumps typical of off-highway applications.
Technical Paper

Verification of a Gaseous Portable Emissions Measurement System with a Laboratory System Using the Code of Federal Regulations Part 1065

2010-04-12
2010-01-1069
This paper summarizes the validation testing of the Horiba Instruments OBS-2200 gaseous portable emissions measurement system (PEMS) for in-use compliance testing per Title 40 of the Code of Federal Regulations (CFR) Part 1065.920 (Section 1065.920). The qualification process included analyzer verifications as well as engine testing on a model-year 2007 heavy-duty diesel engine produced by Volvo Powertrain. The measurements of brake-specific emissions with the OBS-2200 were compared to those of a CFR Part 1065-compliant CVS test cell over a series of not-to-exceed (NTE) events. The OBS-2200 passed all linearity verifications and analyzer checks required of PEMS. Engine test validation was achieved for all three regulated gaseous emissions (CO, NMHC, and NOX) per 40 CFR Part 1065.920(b)(5)(i), which requires a minimum of 91 percent of the measurement allowance adjusted deltas to be less than or equal to zero.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Technical Paper

Comparison of Four Sampling Methods for Semi-volatile Organic Compounds in Gas Phase Diesel Engine Exhausts

2008-10-06
2008-01-2435
Newly designed Teflon® O-rings along with XAD-2 resin, stainless steel screens, lock rings, and glass cartridges were used to construct a new semi-volatile organic compounds (SVOC's) sampling device. This new sampling device allows direct and repeated sampling, extraction, and cleaning without ever having to be disassembled or reassembled. This new XAD-2 glass cartridge (X2) was compared with three other sampling methods namely Empore® membrane (EM), hexane impinger (HI), and “Cold Trap” (CT) for SVOC sampling efficiency on diesel engine exhaust emissions. The X2 method showed the highest overall SVOC collection efficiency, followed by the EM and HI methods. The X2 method has higher trapping efficiency for the oxygenates, polycyclic aromatic hydrocarbons (PAH's), alkyl cyclohexanes, and the alkyl aromatics than the other three SVOC sampling methods. The HI method has the highest trapping efficiency for the normal alkanes.
X