Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Using ALPHA v3.0 to Simulate Conventional and Electrified GHG Reduction Technologies in the MY2022 Light-Duty Fleet

2024-04-09
2024-01-2710
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
Technical Paper

Further Advances in Demonstration of a Heavy-Duty Low NOX System for 2027 and Beyond

2024-04-09
2024-01-2129
Multiple areas in the U.S. continue to struggle with achieving National Ambient Air Quality Standards for ozone. These continued issues highlight the need for further reductions in NOX emission standards in multiple industry sectors, with heavy-duty on-highway engines being one of the most important areas to be addressed. Starting in 2014, CARB initiated a series of technical demonstration programs aimed at examining the feasibility of achieving up to a 90% reduction in tailpipe NOX, while at the same time maintaining a path towards GHG reductions that will be required as part of the Heavy-Duty Phase 2 GHG program. These programs culminated in the Stage 3 Low NOX program, which demonstrated low NOX emissions while maintaining GHG emissions at levels comparable to the baseline engine.
Technical Paper

CARB Off-Road Low NOx Demonstration Program - Engine Calibration and Initial Test Results

2024-04-09
2024-01-2130
Off-road diesel engines remain one of the most significant contributors to the overall oxides of nitrogen (NOX) inventory and the California Air Resources Board (CARB) has indicated that reductions of up to 90% from current standards may be necessary to achieve its air quality goals. In recognition of this, CARB has funded a program aimed at demonstrating emission control technologies for off-road engines. This program builds on previous efforts to demonstrate Low NOX technologies for on-road engines. The objective was to demonstrate technologies to reduce tailpipe NOX and particulate matter (PM) emissions by 90 and 75%, respectively, from the current Tier 4 Final standards. In addition, the emission reductions were to be achieved while also demonstrating a 5 to 8.6% carbon dioxide (CO2) reduction and remaining Greenhouse Gas (GHG) neutral with respect to nitrous oxide (N2O) and methane (CH4).
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Improved Combustion Efficiency in Methanol/Renewable Diesel Dual Fuel Combustion by Advanced Injection Timing and Increased Intake Temperature: Single-Cylinder Experiment

2023-10-31
2023-01-1641
Conventional diesel combustion (CDC) is known to provide high efficiency and reliable engine performance, but often associated with high particulate matter (PM) and nitrogen oxides (NOX) emissions. Combustion of fossil diesel fuel also produces carbon dioxide (CO2), which acts as a harmful greenhouse gas (GHG). Renewable and low-carbon fuels such as renewable diesel (RD) and methanol can play an important role in reducing harmful criteria and CO2 emissions into the atmosphere. This paper details an experimental study using a single-cylinder research engine operated under dual-fuel combustion using methanol and RD. Various engine operating strategies were used to achieve diesel-like fuel efficiency. Measurements of engine-out emissions and in-cylinder pressure were taken at test conditions including low-load and high-load operating points.
Technical Paper

Evaluating the Impact of Connected Vehicle Technology on Heavy-Duty Vehicle Emissions

2023-04-11
2023-01-0716
Eco-driving algorithms enabled by Vehicle to Everything (V2X) communications in Connected and Automated Vehicles (CAVs) can improve fuel economy by generating an energy-efficient velocity trajectory for vehicles to follow in real time. Southwest Research Institute (SwRI) demonstrated a 7% reduction in energy consumption for fully loaded class 8 trucks using SwRI’s eco-driving algorithms. However, the impact of these schemes on vehicle emissions is not well understood. This paper details the effort of using data from SwRI’s on-road vehicle tests to measure and evaluate how eco-driving could impact emissions. Two engine and aftertreatment configurations were evaluated: a production system that meets current NOX standards and a system with advanced aftertreatment and engine technologies designed to meet low NOX 2031+ emissions standards.
Technical Paper

An Update on Continuing Progress Towards Heavy-Duty Low NOX and CO2 in 2027 and Beyond

2023-04-11
2023-01-0357
Despite considerable progress towards clean air in previous decades, parts of the United States continue to struggle with the challenge of meeting the ambient air quality targets for smog-forming ozone mandated by the U.S. EPA, with some of the most significant challenges being seen in California. These continuing issues have highlighted the need for further reductions in emissions of NOX, which is a precursor for ozone formation, from a number of key sectors including the commercial vehicle sector. In response, the California Air Resources Board (CARB) embarked on a regulatory effort culminating in the adoption of the California Heavy-Duty Low NOX Omnibus regulation.[1] This regulatory effort was supported by a series of technical programs conducted at Southwest Research Institute (SwRI).
Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-30
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in the aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Technical Paper

Demonstration of Energy Consumption Reduction in Class 8 Trucks Using Eco-Driving Algorithm Based on On-Road Testing

2022-03-29
2022-01-0139
Vehicle to Everything (V2X) communication has enabled on-board access to information from other vehicles and infrastructure. This information, traditionally used for safety applications, is increasingly being used for improving vehicle fuel economy [1-5]. This work aims to demonstrate energy consumption reductions in heavy/medium duty vehicles using an eco-driving algorithm. The algorithm is enabled by V2X communication and uses data contained in Basic Safety Messages (BSMs) and Signal Phase and Timing (SPaT) to generate an energy-efficient velocity trajectory for the vehicle to follow. An urban corridor was modeled in a microscopic traffic simulation package and was calibrated to match real-world traffic conditions. A nominal reduction of 7% in energy consumption and 6% in trip time was observed in simulations of eco-driving trucks.
Technical Paper

Reduced Power Cylinder Friction with Advanced Coatings and Optimized Lubricants

2022-03-29
2022-01-0523
The engine power cylinder is comprised of the piston, piston rings, and cylinder. It accounts for a significant amount of total engine friction within reciprocating, internal combustion engines. Reducing power cylinder friction is key to the development of efficient internal combustion engines. However, isolating individual power cylinder tribocouples for detailed analysis can be challenging. In this work, a new reciprocating liner test rig is developed and introduced. The rig design is novel, using a stationary piston and a reciprocating cylinder liner. Friction is calculated from the force measured in the connecting rod which supports the piston. The rig allows for independent control of peak cylinder pressure, speed, and lubricant temperature. Using the newly developed test rig, several technologies for friction reduction are evaluated and compared.
Technical Paper

Benefits of a Dual HP and LP EGR Circuit on a Turbocharged Direct Injection Gasoline Engine

2022-03-29
2022-01-0429
Internal combustion engines (ICE) will be a part of personal transportation for the foreseeable future. One recent trend for engines has been downsizing which enables the engine to be run more efficiently over regulatory drive cycles. Due to downsizing, engine power density has increased which leads to problems with engine knock. Therefore, there is an increasing need to find a means to reduce the knock propensity of downsized engines. One of the ways of reducing knock propensity is by introducing Exhaust Gas Recirculation (EGR) into the combustion chamber, however, volumetric efficiency also reduces with EGR which places challenges on the boosting system. The individual benefits of high-pressure (HP-EGR) and low-pressure (LP-EGR) loop EGR system to assist the boosting system of a 2.0 L Gasoline Direct Injection (GDI) production engine are explored in this paper.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Technical Paper

Development of an Intake Valve Deposit Test with a GM LE9 2.4L Engine

2021-09-21
2021-01-1186
The U.S. Environmental Protection Agency (EPA) certifies gasoline deposit control additives for intake valve deposit (IVD) control utilizing ASTM D5500, a vehicle test using a1985 BMW 318i. Concerns with the age of the test fleet, its relevance in the market today, and the availability of replacement parts led the American Chemistry Council’s (ACC) Fuel Additive Task Group (FATG) to begin a program to develop a replacement. General Motors suggested using a 2.4L LE9 test engine mounted on a dynamometer and committed to support the engine until 2030. Southwest Research Institute (SwRI®) was contracted to run the development program in four Phases. In Phase I, the engine test stand was configured, and a test fuel selected. In Phase II, a series of tests were run to identify a cycle that would build an acceptable level of deposits on un-additized fuel. In Phase III, the resultant test cycle was examined for repeatability.
Journal Article

CARB Low NOX Stage 3 Program - Final Results and Summary

2021-04-06
2021-01-0589
Despite considerable progress over the last several decades, California continues to face some of the most significant air quality problems in the United States. These continued issues highlight the need for further mobile source NOX reductions to help California and other areas meet ambient air quality targets mandated by the U.S. EPA. Beginning in 2014, the California Air Resources Board (CARB) launched a program aimed at demonstrating technologies that could enable heavy-duty on-highway engines to reach tailpipe NOX levels up to 90% below the current standards, which were implemented in 2010. At the same time, mandated improvements to greenhouse gas emissions (GHG) require that these NOX reductions be achieved without sacrificing fuel consumption and increasing GHG emissions.
Technical Paper

Reduced Piston Oil Cooling for Improved Heavy-Duty Vehicle Fuel Economy

2021-04-06
2021-01-0387
Increased electrification of future heavy-duty engines and vehicles can enable many new technologies to improve efficiency. Electrified oil pumps are one such technology that provides the ability to reduce or turn off the piston oil cooling jets and simultaneously reduce the oil pump flow to account for the reduced flow rate required. This can reduce parasitic losses and improve overall engine efficiency. In order to study the potential impact of reduced oil cooling, a GT-Power engine model prediction of piston temperature was calibrated based on measured piston temperatures from a wireless telemetry system. A simulation was run in which the piston oil cooling was controlled to target a safe piston surface temperature and the resulting reduction in oil cooling was determined. With reduced oil cooling, engine BSFC improved by 0.2-0.8% compared to the baseline with full oil cooling, due to reduced heat transfer from the elevated piston temperatures.
Technical Paper

Particle Number Emissions Evaluation for Conventional SI, Low-Pressure Loop EGR, and D-EGR Combustion Strategies

2021-04-06
2021-01-0485
The size and distribution of a vehicle’s tailpipe particulate emissions can have a strong impact on human health, especially if the particles are small enough to enter the human respiratory system. Gasoline direct injection (GDI) has been adopted widely to meet stringent fuel economy and CO2 regulations across the globe for recent engine architectures. However, the introduction of GDI has led to challenges concerning the particulate matter (PM) and particle number (PN) emissions from such engines. This study aimed to compare the particulate emissions of three SI combustion strategies: conventional SI, conventional stoichiometric low-pressure exhaust gas recirculation (LP-EGR), and Dedicated-EGR (D-EGR) at four specific test conditions. It was shown that the engine-out PM/PN for both the EGR strategies was lower than the conventional SI combustion under normal operating conditions. The test conditions were chosen to represent the WLTC test conditions.
Journal Article

Ignition Delay Model Parameterization Using Single-Cylinder Engines Data

2020-09-15
2020-01-2005
The confluence of increasing fuel economy requirements and increased use of ethanol as a gasoline blend component has led to various studies into the efficiency and performance benefits of higher octane numbers and high ethanol content fuels in modern engines. As part of a comprehensive study of the autoignition of different fuels in both the CFR octane rating engine and a modern, direct injection, turbocharged spark-ignited engine, a series of fuel blends were prepared with varying composition, octane numbers and ethanol blend levels. The paper reports on the third part of this study where cylinder pressures were recorded for fuels under knocking conditions in both a single-cylinder research engine (SCE), utilizing a GM LHU head and piston, as well as the CFR engines used for octane ratings.
Journal Article

The Effects of EGR Composition on Combustion Performance and Efficiency

2020-09-15
2020-01-2052
Because of the thermodynamic relationship of pressure, temperature and volume for processes which occur in an internal-combustion engine (ICE), and their relationship to ideal efficiency and efficiency-limiting phenomena e.g. knock in spark-ignition engines, changing the thermo-chemical properties of the in-cylinder charge should be considered as an increment in the development of the ICE engine for future efficiency improvements. Exhaust gas recirculation (EGR) in spark-ignited gasoline engines is one increment that has been made to alter the in-cylinder charge. EGR gives proven thermal efficiency benefits for SI engines which improve vehicle fuel economy, as demonstrated through literature and production applications. The thermal efficiency benefit of EGR is due to lower in-cylinder temperatures, reduced heat transfer and reduced pumping losses. The next major increment could be modifying the constituents of the EGR stream, potentially through the means of a membrane.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
X