Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Comparison of Exhaust Emissions, Including Toxic Air Contaminants, from School Buses in Compressed Natural Gas, Low Emitting Diesel, and Conventional Diesel Engine Configurations

2003-03-03
2003-01-1381
In the United States, most school buses are powered by diesel engines. Some have advocated replacing diesel school buses with natural gas school buses, but little research has been conducted to understand the emissions from school bus engines. This work provides a detailed characterization of exhaust emissions from school buses using a diesel engine meeting 1998 emission standards, a low emitting diesel engine with an advanced engine calibration and a catalyzed particulate filter, and a natural gas engine without catalyst. All three bus configurations were tested over the same cycle, test weight, and road load settings. Twenty-one of the 41 “toxic air contaminants” (TACs) listed by the California Air Resources Board (CARB) as being present in diesel exhaust were not found in the exhaust of any of the three bus configurations, even though special sampling provisions were utilized to detect low levels of TACs.
Technical Paper

Reactivity and Exhaust Emissions from an EHC-Equipped LPG Conversion Vehicle Operating on Butane/Propane Fuel Blends

1996-10-01
961991
This paper describes experiments conducted to determine Federal Test Procedure (FTP) exhaust emissions, ozone-forming potentials, specific reactivities, and reactivity adjustment factors for several butane/propane alternative fuel blends run on a light-duty EHC-equipped gasoline vehicle converted to operate on liquefied petroleum gas (LPG). Duplicate emission tests were conducted on the light-duty vehicle at each test condition using appropriate EPA FTP test protocol. Hydrocarbon speciation was utilized to determine reactivity-adjusted non-methane organic gas (NMOG) emissions for one test on each fuel.
Technical Paper

Cold-Start Hydrocarbon Collection for Advanced Exhaust Emission Control

1992-02-01
920847
This paper describes the findings of a laboratory effort to demonstrate improved automotive exhaust emission control with a cold-start hydrocarbon collection system. The emission control strategy developed in this study incorporated a zeolite molecular sieve in the exhaust system to collect cold-start hydrocarbons for subsequent release to an active catalytic converter. A prototype emission control system was designed and tested on a gasoline-fueled vehicle. Continuous raw exhaust emission measurements upstream and downstream of the zeolite molecular sieve revealed collection, storage, and release of cold-start hydrocarbons. Federal Test Procedure (FTP) emission results show a 35 percent reduction in hydrocarbons emitted during the cold-transient segment (Bag 1) due to adsorption by the zeolite.
X