Refine Your Search

Topic

Author

Search Results

Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

Using ALPHA v3.0 to Simulate Conventional and Electrified GHG Reduction Technologies in the MY2022 Light-Duty Fleet

2024-04-09
2024-01-2710
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
Technical Paper

An Update on Continuing Progress Towards Heavy-Duty Low NOX and CO2 in 2027 and Beyond

2023-04-11
2023-01-0357
Despite considerable progress towards clean air in previous decades, parts of the United States continue to struggle with the challenge of meeting the ambient air quality targets for smog-forming ozone mandated by the U.S. EPA, with some of the most significant challenges being seen in California. These continuing issues have highlighted the need for further reductions in emissions of NOX, which is a precursor for ozone formation, from a number of key sectors including the commercial vehicle sector. In response, the California Air Resources Board (CARB) embarked on a regulatory effort culminating in the adoption of the California Heavy-Duty Low NOX Omnibus regulation.[1] This regulatory effort was supported by a series of technical programs conducted at Southwest Research Institute (SwRI).
Technical Paper

Detailed Characterization of Gaseous Emissions from Advanced Internal Combustion Engines

2021-04-06
2021-01-0634
With the advancement of engine technologies and combustion strategies, aftertreatment architectures are expected to evolve as they continue to be the primary emissions mitigation hardware. Some of the engine approaches offer unique challenges and benefits that are not well understood beyond criteria pollutant emissions. As such, there continues to be a need to quantify engine emissions characteristics in pursuit of catalyst technology development and the use of advanced simulation tools. The following study discusses results from an extensive engine emissions assessment for current state-of-the-art technology and novel combustion regimes. The engines tested include a Tier 4 final compliant 6.8 L John Deere PSS 6068 diesel engine, a modified 15 L diesel engine, and a dual fuel 13 L natural gas-diesel engine. The dual fuel engine could operate in conventional positive ignition mode (CDF) or low temperature reactivity-controlled compression ignition mode (RCCI).
Technical Paper

Assessment of Changing Relationships between Vehicle Fuel Consumption and Acceleration Performance

2020-09-07
2020-01-5067
In light-duty vehicles, there is a fundamental trade-off between fuel consumption and acceleration performance, if other vehicle attributes are held fixed. Earlier econometric studies have estimated the magnitude of this trade-off - the elasticity of fuel consumption with respect to performance - based on historical vehicle data. The majority of these studies assume, a priori, that elasticity is constant across the model year, vehicle power, and technology content. However, there is evidence that the content in the underlying powertrain technology packages is shifting in a way that reduces the value of the elasticity of fuel consumption with respect to performance, such that historical trends would not predict future behavior. This paper presents an alternative strategy for studying vehicle fuel consumption versus performance trade-off.
Technical Paper

Benchmarking a 2018 Toyota Camry UB80E Eight-Speed Automatic Transmission

2020-04-14
2020-01-1286
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry front wheel drive eight-speed automatic transmission was benchmarked. The benchmarking data were used as inputs to EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model to estimate GHG emissions from light-duty vehicles. ALPHA requires both detailed engine fuel consumption maps and transmission torque loss maps. EPA’s National Vehicle and Fuels Emissions Laboratory has developed a streamlined, cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to characterize transmissions within ALPHA. This testing methodology targets the range of transmission operation observed during vehicle testing over EPA’s city and highway drive cycles.
Technical Paper

In-Situ Measurement of Component Efficiency in Connected and Automated Hybrid-Electric Vehicles

2020-04-14
2020-01-1284
Connected and automated driving technology is known to improve real-world vehicle efficiency by considering information about the vehicle’s environment such as traffic conditions, traffic lights or road grade. This study shows how the powertrain of a hybrid-electric vehicle realizes those efficiency benefits by developing methods to directly measure real-time transient power losses of the vehicle’s powertrain components through chassis-dynamometer testing. This study is a follow-on to SAE Technical Paper 2019-01-0116, Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles [1], to understand the sources of efficiency gains resulting from connected and automated vehicle driving. A 2017 Toyota Prius Prime was instrumented to collect power measurements throughout its powertrain and driven over a specific driving schedule on a chassis dynamometer.
Journal Article

Use of Nitric Acid to Control the NO2:NOX Ratio within the Exhaust Composition Transient Operation Laboratory Exhaust Stream

2020-04-14
2020-01-0371
The Exhaust Composition Transient Operation LaboratoryTM (ECTO-LabTM) is a burner system developed at Southwest Research Institute (SwRI) for simulation of IC engine exhaust. The current system design requires metering and combustion of nitromethane in conjunction with the primary fuel source as the means of NOX generation. While this method affords highly tunable NOX concentrations even over transient cycles, no method is currently in place for dictating the speciation of nitric oxide (NO) and nitrogen dioxide (NO2) that constitute the NOX mixture. NOX generated through combustion of nitromethane is dominated by NO, and generally results in an NO2:NOX ratio of < 5 %. Generation of any appreciable quantities of NO2 is therefore dependent on an oxidation catalyst to oxidize a fraction of the NO to NO2.
Journal Article

Energy Efficient Maneuvering of Connected and Automated Vehicles

2020-04-14
2020-01-0583
Onboard sensing and external connectivity using Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Everything (V2X) technologies allows a vehicle to "know" its future operating environment with some degree of certainty, greatly narrowing prior information gaps. The increased development of such connected and automated vehicle systems, currently used mostly for safety and driver convenience, presents new opportunities to improve the energy efficiency of individual vehicles [1, 2, 3, 4, 5]. Southwest Research Institute (SwRI) in collaboration with Toyota Motor North America and University of Michigan is currently working on improving energy consumption of a Toyota Prius Prime 2017 by 20%. This paper will provide an overview of the various algorithms that are being developed to achieve the energy consumption target. Custom tools such as a traffic simulator was built to model traffic flow in Fort Worth, Texas with sufficient accuracy.
Technical Paper

Real-World Emission Modeling and Validations Using PEMS and GPS Vehicle Data

2019-04-02
2019-01-0757
Portable Emission Measurement Systems (PEMS) are used by the U.S. Environmental Protection Agency (EPA) to measure gaseous and particulate mass emissions from vehicles in normal, in-use, on-the-road operation to support many of its programs, including assessing mobile source emissions compliance, emissions factor assessment for in-use fleet modeling, and collection of in-use vehicle operational data to support vehicle simulation modeling programs. This paper discusses EPA’s use of Global Positioning System (GPS) measured altitude data and electronically logged vehicle speed data to provide real-world road grade data for use as an input into the Gamma Technologies GT-DRIVE+ vehicle model. The GPS measured altitudes and the CAN vehicle speed data were filtered and smoothed to calculate the road grades by using open-source Python code and associated packages.
Technical Paper

Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles

2019-04-02
2019-01-0116
A new generation of vehicle dynamics and powertrain control technologies are being developed to leverage information streams enabled via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity [1, 2, 3, 4, 5]. While algorithms that use these connected information streams to enable improvements in energy efficiency are being studied in detail, methodologies to quantify and analyze these improvements on a vehicle have not yet been explored fully. A procedure to test and accurately measure energy-consumption benefits of a connected and automated vehicle (CAV) is presented. The first part of the test methodology enables testing in a controlled environment. A traffic simulator is built to model traffic flow in Fort Worth, Texas with sufficient accuracy. The benefits of a traffic simulator are two-fold: (1) generation of repeatable traffic scenarios and (2) evaluation of the robustness of control algorithms by introducing disturbances.
Journal Article

Representing GHG Reduction Technologies in the Future Fleet with Full Vehicle Simulation

2018-04-03
2018-01-1273
As part of an ongoing assessment of the potential for reducing greenhouse gas (GHG) emissions of light-duty vehicles, the U.S. Environmental Protection Agency (EPA) has implemented an updated methodology for applying the results of full vehicle simulations to the range of vehicles across the entire fleet. The key elements of the updated methodology explored for this article, responsive to stakeholder input on the EPA’s fleet compliance modeling, include (1) greater transparency in the process used to determine technology effectiveness and (2) a more direct incorporation of full vehicle simulation results. This article begins with a summary of the methodology for representing existing technology implementations in the baseline fleet using EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation. To characterize future technologies, a full factorial ALPHA simulation of every conventional technology combination to be considered was conducted.
Technical Paper

Characterization of GHG Reduction Technologies in the Existing Fleet

2018-04-03
2018-01-1268
By almost any definition, technology has penetrated the U.S. light-duty vehicle fleet significantly in conjunction with the increased stringency of fuel economy and GHG emissions regulations. The physical presence of advanced technology components provides one indication of the efforts taken to reduce emissions, but that alone does not provide a complete measure of the benefits of a particular technology application. Differences in the design of components, the materials used, the presence of other technologies, and the calibration of controls can impact the performance of technologies in any particular implementation. The effectiveness of a technology for reducing emissions will also be influenced by the extent to which the technologies are applied towards changes in vehicle operating characteristics such as improved acceleration, or customer features that may offset mass reduction from the use of lightweight materials.
Technical Paper

Constructing Engine Maps for Full Vehicle Simulation Modeling

2018-04-03
2018-01-1412
The Environmental Protection Agency (EPA) has collected a variety of engine and vehicle test data to assess the effectiveness of new automotive technologies in meeting greenhouse gas (GHG) and criteria emission standards and to monitor their behavior in real world operation. EPA’s Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate GHG emissions from vehicles using various combinations of advanced technologies and has been refined using data from testing conducted at EPA’s National Vehicle and Fuel Emissions Laboratory. This paper describes a process for constructing complete engine maps using engine dynamometer and in-vehicle test data for use in ALPHA or any other full vehicle simulation which performs similar analyses. The paper reviews how to use available steady state and transient test data to characterize different operating conditions, and then combine the data to construct a complete engine map suitable for ALPHA model simulation.
Technical Paper

Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

2017-11-17
2017-01-5020
As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
Journal Article

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

2017-03-28
2017-01-0533
The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles. The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA.
Technical Paper

Modeling and Validation of 12V Lead-Acid Battery for Stop-Start Technology

2017-03-28
2017-01-1211
As part of the Midterm Evaluation of the 2017-2025 Light-duty Vehicle Greenhouse Gas Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of stop-start technology for reducing CO2 emissions from light-duty vehicles. Stop-start technology is widespread in Europe due to high fuel prices and due to stringent EU CO2 emissions standards beginning in 2012. Stop-start has recently appeared as a standard equipment option on high-volume vehicles like the Chevrolet Malibu, Ford Fusion, Chrysler 200, Jeep Cherokee, and Ram 1500 truck. EPA has included stop-start technology in its assessment of CO2-reducing technologies available for compliance with the standards. Simulation and modeling of this technology requires a suitable model of the battery. The introduction of stop-start has stimulated development of 12-volt battery systems capable of providing the enhanced performance and cycle life durability that it requires.
Journal Article

Fleet-Level Modeling of Real World Factors Influencing Greenhouse Gas Emission Simulation in ALPHA

2017-03-28
2017-01-0899
The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
Technical Paper

Connected Commercial Vehicles

2016-09-27
2016-01-8009
While initial Connected Vehicle research in the United States was focusing almost exclusively on passenger vehicles, a program was envisioned that would enhance highway safety, mobility, and operational efficiencies through the application of the technology to commercial vehicles. This program was realized in 2009 by funding from the I-95 Corridor Coalition, led by the New York State Department of Transportation, and called the Commercial Vehicle Infrastructure Integration (CVII) program. The CVII program focuses on developing, testing and deploying Connected Vehicle technology for heavy vehicles. Since its inception, the CVII program has developed numerous Vehicle-to-Vehicle and Vehicle-to-Infrastructure applications for trucks that leverage communication with roadside infrastructure and other light and heavy duty vehicles to meet the objectives of the program.
X