Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

CARB Off-Road Low NOx Demonstration Program - Engine Calibration and Initial Test Results

2024-04-09
2024-01-2130
Off-road diesel engines remain one of the most significant contributors to the overall oxides of nitrogen (NOX) inventory and the California Air Resources Board (CARB) has indicated that reductions of up to 90% from current standards may be necessary to achieve its air quality goals. In recognition of this, CARB has funded a program aimed at demonstrating emission control technologies for off-road engines. This program builds on previous efforts to demonstrate Low NOX technologies for on-road engines. The objective was to demonstrate technologies to reduce tailpipe NOX and particulate matter (PM) emissions by 90 and 75%, respectively, from the current Tier 4 Final standards. In addition, the emission reductions were to be achieved while also demonstrating a 5 to 8.6% carbon dioxide (CO2) reduction and remaining Greenhouse Gas (GHG) neutral with respect to nitrous oxide (N2O) and methane (CH4).
Technical Paper

System Level Simulation of H2 ICE after Treatment System

2024-04-09
2024-01-2625
Hydrogen Internal Combustion Engines (H2 ICE) are gaining recognition as a nearly emission-free alternative to traditional ICE engines. However, H2 ICE systems face challenges related to thermal management, N2O emissions, and reduced SCR efficiency in high humidity conditions (15% H2O). This study assesses how hydrogen in the exhaust affects after-treatment system components for H2 ICE engines, such as Selective Catalytic Reduction (SCR), Hydrogen Oxidation Catalyst (HOC), and Ammonia Slip Catalyst (ASC). Steady-state experiments with inlet H2 inlet concentrations of 0.25% to 1% and gas stream moisture levels of up to 15% H2O were conducted to characterize the catalyst response to H2 ICE exhaust. The data was used to calibrate and validate system component models, forming the basis for a system simulation.
Technical Paper

Analysis of overcharge tolerance of aged LMO cells with Examples

2023-09-29
2023-32-0108
The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms associated with unwanted side reactions that occur in these batteries. The same reactions occur during overcharge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. As the battery ages the accuracy of state of charge prediction decreases and vulnerability to persistent overcharge increases. Moreover, as the battery ages, its tolerance to such unintended overcharge changes. This tolerance depends on the nature of the history of cycle and calendar aging. A map of this tolerance in the BMS can provide awareness of the factor of safety due to overcharge as battery ages. Signatures of early warning signs of incipient thermal runaway due to overcharge can also be very useful features in a BMS.
Journal Article

Low Ambient Temperature Impact on a Low NOX Demonstration System

2023-04-11
2023-01-0361
In 2020, CARB adopted the low NOX omnibus ruling, which provided revisions to on-road heavy duty engine compliance standards and certification practices. As part of the updates to the regulation, CARB has introduced a new in-use vehicle testing process that broadens the operation modes tested and considers the manufacturer’s intended vehicle application. Compared to the previous method, or the Not-to-Exceed approach, cold start and low ambient temperature provisions were included as part of the updates. The inclusion of low temperature operation requires the OEMs to design a robust engine and aftertreatment package that extends NOX conversion performance. The following work discusses the NOX emissions performance impact in a low temperature ambient environment. The engine and aftertreatment system evaluated was designed to comply with CARB’s low NOX regulations. The cycles tested included the CARB Southern NTE cycle and an FTP-LLC protocol.
Journal Article

A One-Way Coupled Modeling Method to Simulate Battery Pack Thermal Runaway Initiated by an External Impact

2023-04-11
2023-01-0593
There is an ongoing proliferation of electric and electrified vehicles as manufacturers seek to reduce their carbon footprint and meet the carbon reduction targets mandated by governments around the world. An ongoing challenge in electric vehicle design is the efficient and safe design of battery packs. There are significant safety challenges for lithium battery packs relating to thermal runaway, which can be initiated through overheating and internal short from defects or external damage. This work proposes a robust method to couple the mechanical damage in a battery module calculated from a dynamic model with a thermal model of the battery that includes heating from electro-chemical sources as well as Arrhenius reactions from the battery cells. The authors identify the main sources of thermal runaway initiation and propagation in an impact scenario simulating a vehicle collision. The modeling approach was developed and validated using test data.
Technical Paper

Comparison of Representative Wet and Dry Fire Suppressants to Retard Fire Propagation in Lithium-Ion Modules Initiated by Overcharge Abuse

2023-04-11
2023-01-0520
Overcharging lithium-ion batteries is a failure mode that is observed if the battery management system (BMS) or battery charger fails to stop the charging process as intended. Overcharging can easily lead to thermal runaway in a battery. In this paper, nickel manganese cobalt (NMC) battery modules from the Chevrolet Bolt, lithium manganese oxide (LMO) battery modules from the Chevrolet Volt, and lithium iron phosphate (LFP) battery modules from a hybrid transit bus were overcharged. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages, gaseous emissions, and feedback from volatile organic compound (VOC) sensors. Overcharging a battery can cause lithium plating and other exothermic reactions that will lead to thermal runaway.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part I: Accelerated Ash Loading and DPF Performance Evaluation

2023-04-11
2023-01-0297
The project objective was to generate experimental data to evaluate the impact of metals doped B20 on DPF ash loading and performance compared to that of conventional petrodiesel. Accelerated ash loading was conducted on two DPFs – one exposed to regular diesel fuel and the other to B20 containing metal dopants equivalent to 4 ppm B100 total metals (currently total metals are limited to 10 ppm in ASTM D6751, the standard for B100). Periodic performance evaluations were conducted on the DPFs at 10 g/L ash loading intervals. After the evaluations at 30 g/L, the DPF was cleaned with a commercial DPF cleaning machine and another round of DPF evaluations were conducted. A comparison of the effect of ash loading with the two fuels and DPF cleaning is presented. The metals doped B20 fuel resulted in ash that was similar to that deposited when exposed to ULSD (lube oil ash) and exhibited similar ash cleaning removal efficiency.
Technical Paper

Unregulated Emissions Characterization and Comparison for Two Off-Road Applications: A DPF and Non-DPF Engine

2022-03-29
2022-01-0587
As governmental agencies focus on low levels of the oxides of nitrogen (NOx) emissions compliance, new off-road applications are being reviewed for both regulated and unregulated emissions to understand the technological challenges and requirements for improved emissions performance. The California Air Resources Board (CARB) has declared its intention to pursue more stringent NOX standards for the off-road market. As part of this effort, CARB initiated a program to provide a detailed characterization of emissions meeting the current Tier 4 off-road standards [1]. This work focused on understanding the off-road market, establishing a current technology emissions baseline, and performing initial modeling on potential low NOx solutions. This paper discusses a part of this effort, focuses on the emissions characterization from two non-road engine platforms, and compares the emissions species from different approaches designed to meet Tier 4 emissions regulations.
Journal Article

An Evaluation of an Unhealthy Part Identification Using a 0D-1D Diesel Engine Simulation Based Digital Twin

2022-03-29
2022-01-0382
Commercial automotive diesel engine service and repair, post a diagnostic trouble code trigger, relies on standard troubleshooting steps laid down to identify or narrow down to a faulty engine component. This manual process is cumbersome, time-taking, costly, often leading to incorrect part replacement and most importantly usually associated with significant downtime of the vehicle. Current study aims to address these issues using a novel in-house simulation-based approach developed using a Digital Twin of the engine which is capable of conducting in-mission troubleshooting with real world vehicle/engine data. This cost-effective and computationally efficient solution quickly provides the cause of the trouble code without having to wait for the vehicle to reach the service bay. The simulation is performed with a one-dimensional fluid dynamics, detailed thermodynamics and heat transfer-based diesel engine model utilizing the GT-POWER engine performance tool.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0707
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Journal Article

A Comparative Study of Lithium-Ion Cathode Chemistry Correlations with Emissions Initiated by Nail Penetration Abuse in the Presence of an Immersive Coolant

2022-03-29
2022-01-0715
Internal short-circuit in cells/batteries is a phenomenon where there is direct electrical contact between the positive and negative electrodes leading to thermal runaway. The nail penetration tests were used to simulate an internal short circuit within the battery, where a conductive nail was used to pierce the battery cell separator membrane which provided direct electrical contact between the positive and negative electrodes. The batteries tested during this work were common batteries used in existing automotive applications, and they included a nickel manganese cobalt (NMC) battery from a Chevrolet Bolt, a lithium manganese oxide (LMO) battery from a Chevrolet Volt, and a lithium iron phosphate (LFP) battery in a hybrid transit bus. The battery abuse and emissions tests were designed to intentionally drive the three different battery chemistries into thermal runaway while measuring battery temperatures, battery voltages and gaseous emissions.
Technical Paper

Improving Brake Thermal Efficiency Using High-Efficiency Turbo and EGR Pump While Meeting 2027 Emissions

2021-09-21
2021-01-1154
Commercial vehicles are moving in the direction of improving brake thermal efficiency while also meeting future diesel emission requirements. This study is focused on improving efficiency by replacing the variable geometry turbine (VGT) turbocharger with a high-efficiency fixed geometry turbocharger. Engine-out (EO) NOX emissions are maintained by providing the required amount of exhaust gas recirculation (EGR) using a 48 V motor driven EGR pump downstream of the EGR cooler. This engine is also equipped with cylinder deactivation (CDA) hardware such that the engine can be optimized at low load operation using the combination of the high-efficiency turbocharger, EGR pump and CDA. The exhaust aftertreatment system has been shown to meet 2027 emissions using the baseline engine hardware as it includes a close coupled light-off SCR followed by a downstream SCR system.
Technical Paper

Combination of Mixed Metal Oxides with Cu-Zeolite for Enhanced Soot Oxidation on an SCRoF

2021-09-05
2021-24-0071
A push for more stringent emissions regulations has resulted in larger, increasingly complex aftertreatment solutions. In particular, oxides of nitrogen (NOX) and particulate matter (PM) have been controlled using two separate systems, selective catalytic reduction (SCR) and the catalyze diesel particulate filter (CDPF), or the functionality has been combined into a single device producing the SCR on filter (SCRoF). The SCRoF forgoes beneficial NO2 production present in the CDPF to avoid NH3 oxidation which occurs when using platinum group metals (PGM) for oxidation. In this study, mixed-metal oxides are shown to oxidize NO to NO2 without appreciable NH3 oxidation. This selectivity leads to enhanced performance when combined with a typical Cu-zeolite catalyst.
Technical Paper

Light Duty Vehicle Life Cycle Analysis

2021-04-06
2021-01-0789
The short-term future direction of the automotive transportation sector is uncertain. Many governments and environmental localities around the world are proposing internal combustion engine (ICE) bans and enacting large subsidy programs for zero-tailpipe emissions vehicles powered by batteries or fuel-cells. Such policies can be effective in driving the consumer towards specific powertrains. The reason for such aggressive change is to reduce the sector’s carbon footprint. However, it is not clear if these proposals will reduce greenhouse gas (GHG) emissions. Emissions from raw material extraction, manufacturing, and power generation are shadowed by the focus on reducing the reliance on fossil fuel use. Emissions from non-tailpipe sources should also be considered before pushing for a rapid change to powertrains. Life-cycle analysis (LCA) can assess the GHG emissions produced before, during and after the life of a vehicle in a cradle-to-grave analysis.
Technical Paper

Reduced Piston Oil Cooling for Improved Heavy-Duty Vehicle Fuel Economy

2021-04-06
2021-01-0387
Increased electrification of future heavy-duty engines and vehicles can enable many new technologies to improve efficiency. Electrified oil pumps are one such technology that provides the ability to reduce or turn off the piston oil cooling jets and simultaneously reduce the oil pump flow to account for the reduced flow rate required. This can reduce parasitic losses and improve overall engine efficiency. In order to study the potential impact of reduced oil cooling, a GT-Power engine model prediction of piston temperature was calibrated based on measured piston temperatures from a wireless telemetry system. A simulation was run in which the piston oil cooling was controlled to target a safe piston surface temperature and the resulting reduction in oil cooling was determined. With reduced oil cooling, engine BSFC improved by 0.2-0.8% compared to the baseline with full oil cooling, due to reduced heat transfer from the elevated piston temperatures.
Technical Paper

A Comprehensive Numerical Approach to Predict Thermal Runaway in Li-Ion Battery Packs

2021-04-06
2021-01-0748
With the increasing level of electrification of on-road, off-road and stationary applications, use of larger lithium-ion battery packs has become essential. These packs require large capital investments on the order of millions of dollars and pose a significant risk of self-annihilation without rigorous safety evaluation and management. Testing these larger battery packs to validate design changes can be cost prohibitive. A reliable numerical simulation tool to predict battery thermal runaway under various abuse scenarios is essential to engineer safety into the battery pack design stage. A comprehensive testing & simulation workflow has been established to calibrate and validate the numerical modeling approach with the test data for each of the individual sub model - electrochemical, internal short circuit and thermal abuse model. A four-equation thermal abuse model was built and validated for lithium-ion 21700 form factor cylindrical cells using NCA cathodes.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Technical Paper

Impact of Selective Catalytic Reduction Process on Nonvolatile Particle Emissions

2021-04-06
2021-01-0624
Particulate matter (PM) and NOX are two major pollutants generated by diesel engines. Modern diesel aftertreatment systems include selective catalytic reduction (SCR) technology that helps reduce tailpipe NOX emissions when coupled with diesel exhaust fluid (DEF/urea) injection. However, this process also results in the formation of urea derived byproducts that can influence non-volatile particle number (PN) measurement conducted in accordance with the European Union (EU) Particle Measurement Program (PMP) protocol. In this program, an experimental investigation of the impact of DEF injection on tailpipe PN and its implications for PMP compliant measurements was conducted using a 2015 model year 6.7 L diesel engine equipped with a diesel oxidation catalyst, diesel particulate filter and SCR system. Open access to the engine controller was available to manually override select parameters.
X