Refine Your Search

Topic

Author

Search Results

Technical Paper

Energy Efficiency Technologies of Connected and Automated Vehicles: Findings from ARPA-E’s NEXTCAR Program

2024-04-09
2024-01-1990
This paper details the advancements and outcomes of the NEXTCAR (Next-Generation Energy Technologies for Connected and Automated on-Road Vehicles) program, an initiative led by the Advanced Research Projects Agency-Energy (ARPA-E). The program focusses on harnessing the full potential of Connected and Automated Vehicle (CAV) technologies to develop advanced vehicle dynamic and powertrain control technologies (VD&PT). These technologies have shown the capability to reduce energy consumption by 20% in conventional and hybrid electric cars and trucks at automation levels L1-L3 and by 30% L4 fully autonomous vehicles. Such reductions could lead to significant energy savings across the entire U.S. vehicle fleet.
Journal Article

Battery Selection and Optimal Energy Management for a Range-Extended Electric Delivery Truck

2022-09-16
2022-24-0009
Delivery trucks and vans represent a growing transportation segment which reflects the shift of consumers towards on-line shopping and on-demand delivery. Therefore, electrification of this class of vehicles is going to play a major role in the decarbonization of the transportation sector and in the transition to a sustainable mobility system. Hybrid electric vehicles can represent a medium-term solution and have gained an increasing share of the market in recent years. These vehicles include two power sources, typically an internal combustion engine and a battery, which gives more degrees of freedom when controlling the powertrain to satisfy the power request at the wheels. Components sizing and powertrain energy management are strongly coupled and can make a substantial impact on the final energy consumption of a hybrid vehicle.
Technical Paper

Control Oriented Model of Cabin-HVAC System in a Long-Haul Trucks for Energy Management Applications

2022-03-29
2022-01-0179
Super Truck II is a 48V mild hybrid class 8 truck with an all auxiliary loads powered purely by the battery pack. Electric Heating Ventilation and Air Conditioning (HVAC) load is the most prominent battery load during the hotel period, when the truck driver is resting inside the sleeper. For the PACCAR Super Truck II (ST-II) project a 48 V battery system provides the required power during the hotel period. A cabin-HVAC model estimates the electric load on the 48V battery system, allowing the control system to implement an efficient energy management strategy that avoids engine idling during the hotel period. The thermal model accounts for the sun load due to the time of day and the geographic location of the truck during the hotel period. The cabin-HVAC model has two parts. First, a grey box model with two heat exchangers (Condenser and Evaporator) working in unison with refrigerant mass flow rate as an input and HVAC load as an output.
Technical Paper

Thermal Efficiency Enhancement for Future Rightsized Boosted GDI Engines - Effectiveness of the Operation Point Strategies Depending on the Engine Type

2021-09-05
2021-24-0009
Internal combustion engines are the primary transportation mover for today society and they will likely continue to be for decades to come. Hybridization is the most common solution to reduce the petrol-fuels consumption and to respect the new raw emission limits. The gasoline engines designed for running together with an electric motor need to have a very high thermal efficiency because they must work at high loads, where engine thermal efficiency is close to the maximum one. Therefore, the technical solutions bringing to thermal efficiency enhancement were adopted on HVs (Hybrid Vehicles) prior to conventional vehicles. In these days, these solutions are going to be adopted on conventional vehicles too. The purpose of this work was to trace development guidelines useful for engine designers, based on the target power and focused on the maximization of the engine thermal efficiency, following the engine rightsizing concept.
Technical Paper

Development of Adaptive-ECMS and predictive functions for Plug-in HEVs to Handle Zero-Emission Zones Using Navigation Data

2021-09-05
2021-24-0105
The paper deals with the reduction of pollutant emissions in urban areas by considering a Zero-Emission Zone (ZEZ) in which hybrid electric vehicles (HEVs) are allowed to be driven without using the internal combustion engine, as several cities have planned to realize in the next decades. Moreover, since vehicle connectivity has spread more and more in the last years, a vehicle-to-network (V2N) communication system has been taken into account to retrieve real-time navigation data from a map service provider and thus reconstructing the so-called electronic horizon, which is a reconstruction of the future conditions of the vehicle on the road ahead. The speed profile and the road slope are used as input for an on-board predictive control strategy of a plug-in HEV (PHEV). In particular, a dedicated algorithm predicts the amount of necessary energy to complete the city event in full-electric mode, giving a state of charge (SoC) target value.
Technical Paper

PWI and DWI Systems in Modern GDI Engines: Optimization and Comparison Part I: Non-Reacting Flow Analysis

2021-04-06
2021-01-0461
Currently engine designers are focusing their attention on the improvement of the engine efficiency, led by the reduction of in-cylinder temperature and the adoption of stoichiometric combustion in the full range of the engine operation map. The most demanding points are those close to full power: water injection is thought to help in fulfilling this goal, thus contributing towards more efficient engines. To perform a rapid optimization of the main parameters involved by the water injection process, it is necessary to have reliable CFD methodologies capable of capturing the most important phenomena. In the present work, a methodological approach based on the CFD simulation of non-reacting flows of S.I. GDI turbocharged engines under water injection operation is pursued using AVL Fire code v. 2020.
Journal Article

Holistic Engine and EAT Development of Low NOX and CO2 Concepts for HD Diesel Engine Applications

2020-09-15
2020-01-2092
The latest legislative tendencies for on-highway heavy duty vehicles in the United States such as the feasibility assessment of low NOX standards of CARB or EPA’s memorandum forecast further tightening of the NOX emissions limits. In addition, the GHG Phase 2 legislation and also phased-in regulations in the EU enforce a continuous reduction in CO2 emissions resp. fuel consumption. In order to meet such low NOX emission limits, a rapid heat-up of the exhaust after-treatment system (EATS) is inevitable. However, the required thermal management results in increased fuel consumption, i.e. CO2 emissions as shown in numerous previous works also by the authors. A NOX-CO2 trade-off for cumulative cycle emissions can be observed, which can be optimized by using more advance technologies on the engine and/or on the EATS side.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Modeling, Validation and Control Strategy Development of a Hybrid Super Sport Car Based on Lithium Ion Capacitors

2020-04-14
2020-01-0442
Today, the contribution of the transportation sector on greenhouse gases is evident. The fast consumption of fossil fuels and its impact on the environment have given a strong impetus to the development of vehicles with better fuel economy. Hybrid electric vehicles fit into this context with different targets, starting from the reduction of emissions and fuel consumption, but also for performance and comfort enhancement. Lamborghini has recently invested in the development of a hybrid super sport car, due to performance and comfort reasons. Aventador series gearbox is an Independent Shift Rod gearbox with a single clutch and during gear shifts, as all the single clutch gearbox do, it generates a torque gap. To avoid the additional weight of a Dual Clutch Transmission, a 48V Electric Motor has been connected to the wheels, in a P3 configuration, to fill the torque gap, and to habilitate regenerative braking and electric boost functions.
Technical Paper

Injection Pattern Investigation for Gasoline Partially Premixed Combustion Analysis

2019-09-09
2019-24-0112
Nowadays, compression-ignited engines are considered the most efficient and reliable technology for automotive applications. However, mainly due to the current emission regulations, that require increasingly stringent reductions of NOx and particulate matter, the use of diesel-like fuels is becoming a critical issue. For this reason, a large amount of research and experimentation is being carried out to investigate innovative combustion techniques suitable to simultaneously mitigate the production of NOx and soot, while improving engine efficiency. In this scenario, the combined use of compression-ignited engines and gasoline-like fuels proved to be very promising, especially in case the fuel is directly-injected in the combustion chamber at high pressure. The presented study analyzes the combustion process produced by the direct injection of small amounts of gasoline in a compression-ignited light-duty engine.
Technical Paper

Conceptual Design and Analytic Assessment of 48V Electric Hybrid Powertrain Architectures for Passenger Cars

2019-04-02
2019-01-0353
To meet the requirements in relation to pollutants, CO2-emissions, performances, comfort and costs for 2025 timeframe, many technology options for the powertrain, that plays a key role in the vehicle, are possible. Beside the central aspect of reducing standard cycle consumption levels and emissions, consumer demands are also growing with respect to comfort and functionality. In addition, there is also the challenge of finding cost efficient ways of integrating technologies into a broad range of vehicles with different levels of hybridization. High degrees of electrification simultaneously provide opportunities to reduce the technology content of the internal combustion engines (ICE), resulting in a cost balancing compromise between combustion engine and hybrid technology. The design and optimization of powertrain topologies, functionalities, and components require a complex development process.
Technical Paper

Predictive Energy Management Strategies for Hybrid Electric Vehicles: Fuel Economy Improvement and Battery Capacity Sensitivity Analysis

2018-04-03
2018-01-0998
This paper shows the influence of different battery charge management strategies on the fuel economy of a hybrid parallel axle-split vehicle in a real driving scenario, for a vehicle control system that has the additional possibility to split the torque between front and rear axles. The first section regards the validation of a self-developed Model in the Loop (MiL) environment of a P1-P4 plug-in hybrid electric car, using experimental data of a New European Driving Cycle test. In its original version, which is implemented on-board the vehicle, the energy management supervisor implements a heuristic, or rule-based, Energy Management Strategy (EMS). During this project, a different EMS has been developed, consisting of a sub-optimal control scheme called Equivalent Consumption Minimization Strategy (ECMS), explained in detail in the second section.
Technical Paper

Motor Resolver Fault Diagnosis for AWD EV based on Structural Analysis

2018-04-03
2018-01-1354
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are getting more attention in the automotive industry with the technology improvement and increasing focus on fuel economy. For EVs and HEVs, especially all-wheel drive (AWD) EVs with two electric motors powering front and rear axles separately, an accurate motor speed measurement through resolver is significant for vehicle performance and drivability requirement, subject to resolver faults including amplitude imbalance, quadrature imperfection and reference phase shift. This paper proposes a diagnostic scheme for the specific type of resolver fault, amplitude imbalance, in AWD EVs. Based on structural analysis, the vehicle structure is analyzed considering the vehicle architecture and the sensor setup. Different vehicle drive scenarios are studied for designing diagnostic decision logic. The residuals are designed in accordance with the results of structural analysis and the diagnostic decision logic.
Technical Paper

Low-Cost Powertrain Platform for HEV and EV

2017-01-10
2017-26-0088
Currently known hybrid systems are technically complex, cost-intensive and referring to this for many end-customers not available. Under this boundaries IAV has developed a cost-optimal concept of an efficient and modular powertrain platform for electric and hybrid vehicles. The system is based on one unity gear-set for up to three speeds, which enables seamless shifting with only one friction based clutch. With this platform powertrains can be realized by using a maximum number of carry over parts (COP) for electric vehicles as well as for hybrids. The derivable hybrid powertrains of the platform system are designed for 48V electric motors (EM) which enables the maximum cost potential in combination with the realized gear set and transmission technology. The real simple powertrain platform concept is furthermore scalable for different vehicle segments optionally with or without a hybrid option.
Technical Paper

Analysis of the Mixture Formation at Partial Load Operating Condition: The Effect of the Throttle Valve Rotational Direction

2015-09-06
2015-24-2410
In the next incoming future the necessity of reducing the raw emissions leads to the challenge of an increment of the thermal engine efficiency. In particular it is necessary to increase the engine efficiency not only at full load but also at partial load conditions. In the open literature very few technical papers are available on the partial load conditions analysis. In the present paper the analysis of the effect of the throttle valve rotational direction on the mixture formation is analyzed. The engine was a PFI 4-valves motorcycle engine. The throttle valve opening angle was 17.2°, which lays between the very partial load and the partial load condition. The CFD code adopted for the analysis was the FIRE AVL code v. 2013.2. The exhaust, intake and compression phases till TDC were simulated: inlet/outlet boundary conditions from 1D simulations were imposed.
Technical Paper

Development of a 0D Model Starting from Different RANS CFD Tumble Flow Fields in Order to Predict the Turbulence Evolution at Ignition Timing

2014-11-11
2014-32-0048
Faster combustion and lower cycle-to-cycle variability are mandatory tasks for naturally aspirated engines to reduce emission levels and to increase engine efficiency. The promotion of a stable and coherent tumble structure is considered as one of the best way to promote the in-cylinder turbulence and therefore the combustion velocity. During the compression stroke the tumble vortex is deformed, accelerated and its breakdown in smaller eddies leads to the turbulence enhancement process. The prediction of the final level of turbulence for a particular engine operating point is crucial during the engine design process because it represents a practical comparative means for different engine solutions. The tumble ratio parameter value represents a first step toward the evaluation of the turbulence level at ignition time, but it has an intrinsic limit.
Journal Article

Benchmarking Hybrid Concepts: On-Line vs. Off-Line Fuel Economy Optimization for Different Hybrid Architectures

2013-09-08
2013-24-0084
The recent advance in the development of various hybrid vehicle technologies comes along with the need of establishing optimal energy management strategies, in order to minimize both fuel economy and pollutant emissions, while taking into account an increasing number of state and control variables, depending on the adopted hybrid architecture. One of the objectives of this research was to establish benchmarking performance, in terms of fuel economy, for real time on-board management strategies, such as ECMS (Equivalent Consumption Minimization Strategy), whose structure has been implemented in a SIMULINK model for different hybrid vehicle concepts.
Video

Development of a Hybrid Control Strategy for an Advanced Parallel HEV Powertrain with Two Electrical Axles

2012-05-29
This paper proposes a current limits distribution control strategy for a parallel hybrid electric vehicle (parallel HEV) which includes an advanced powertrain concept with two electrical driving axles. One of the difficulties of an HEV powertrain with two electrical driving axles is the ability to distribute the electrical current of one high voltage battery appropriately to the two independent electrical motors. Depending on the vehicle driving condition (i.e., car maneuver) or the maximization of the entire efficiency chain of the system, a suitable control strategy is necessary. We propose an input-output feedback linearization strategy to cope with the nonlinear system subject to input constraints. This approach needs an external, state dependent saturation element, which translates the state dependent control input saturation to the new feedback linearizing input and therefore preserves the properties of the differential geometric framework.
Video

A Framework for Simulation-Based Development and Calibration of VCU-Functions for Advanced PHEV Powertrains

2012-05-23
Due to the integration of many interacting subsystems like hybrid vehicle management, energy management, distance management, etc. into the VCU platform the design steps for function development and calibration become more and more complex. This makes an aid necessary to relieve the development. Therefore, the aim of the proposed simulation-based development and calibration design is to improve the time-and-cost consuming development stages of modern VCU platforms. A simulation-based development framework is shown on a complex function development and calibration case study using an advanced powertrain concept with a plug-in hybrid electric vehicle (PHEV) concept with two electrical axles. Presenter Thomas Boehme, IAV GmbH
Journal Article

Management of Energy Flow in Complex Commercial Vehicle Powertrains

2012-04-16
2012-01-0724
After the realization of very low exhaust gas emissions and corresponding OBD requirements to fulfill Euro VI and Tier 4 legislation, the focus in heavy-duty powertrain development is on the reduction of fuel consumption and thus CO₂ emissions again. Besides this, the total vehicle operation costs play another major role. A holistic view of the overall powertrain system including the combustion process, exhaust gas aftertreatment, energy recuperation and energy storage is necessary in order to obtain the best possible system for a given application. A management system coordinating the energy flow between the different subsystems while guaranteeing low exhaust emissions plays a major part in operating such complex architectures under optimal conditions.
X