Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Improvements in Empirical Representation of A356-T6 Cast Aluminum Alloy Round-Robin Low Cycle Fatigue Data

1988-08-01
881702
The results of the SAEFDE Committee's round robin low cycle fatigue test program with A356-T6 cast aluminum alloy indicated that the conventional low cycle fatigue model was not a satisfactory representation of the data. This occurred because the elastic strain amplitude-life curve was not log-log linear and this yielded a non-conservative fatigue life representation at both extremes of long and short lives. This paper involves a reanalysis of the A356-T6 composite all-laboratory data using two additional empirical models. These models are: 1. linear log-log total strain amplitude-life 2. bilinear log-log elastic strain amplitude-life Both proposed empirical models improve the representation of the data compared to the conventional low cycle fatigue model. The bi-linear log-log elastic equation, however, when added to the plastic equation, yields a discontinuous curve with non-conservatism in the region of the discontinuity.
Technical Paper

Fracture Toughness of A356-T6 Cast Aluminum Alloy

1988-08-01
881705
Fracture toughness tests were conducted on the SAEFDE Committee's round-robin A356-T6 cast aluminum alloy materials designated X, Y and Z. Compact type specimens with a thickness of 9.1 and 20.3 mm were tested. Valid Klc values couid not be obtained for 9.1 mm thick specimens but were obtained for 20.3 mm thickness specimens. Due to larger castings, and hence slower cooling rates, a coarse secondary dendrite arm spacing, DAS, of 80 to 90 μm existed in the three materials. Similar Klc values were 18, 16.7 and 17.3 for the A356-T6 materials X, Y and Z respectively. Final fracture surfaces were also similar with predominant cleavage fracture with some localized ductile dimples and secondary cracking.
X