Refine Your Search

Topic

Search Results

Technical Paper

Influence of Hardness Variation and Defects on Fatigue Behavior of Automotive Steels

2017-03-28
2017-01-0345
Fatigue behavior of two types of automotive steel, quenched and tempered SUJ2 and carburized SCM820PRH, which are applied as powertrain parts are studied. These two types of steel are different in their hardness distribution from surface to core. The hardness of quenched and tempered SUJ2 is homogenous, in contrast to that of carburized SCM820PRH (SCM) which decreases from surface to core. These steels are investigated in terms of their monotonic tensile properties and fatigue behavior. A number of predictive methods were used to describe the fatigue behavior of these steels. A simple predictive method is based on approximation of S-N curve from ultimate tensile strength. The well-known Murakami’s defect area method was also applied for the prediction of the high cycle fatigue strength.
Technical Paper

Hydrotreated Vegetable Oil and Miller Timing in a Medium-Speed CI Engine

2012-04-16
2012-01-0862
The objective of this paper is to analyse the performance and the combustion of a large-bore single-cylinder medium speed engine running with hydrotreated vegetable oil. This fuel has a paraffinic chemical structure and high Cetane number. These features enable achievement of complete and clean combustion with different engine setups. The main benefits are thus lower soot and nitrogen oxides emissions compared to diesel fuel. The facility used in this study is a research engine, where the conditions upstream the machine, the valve timing and the injection parameters are fully adjustable. In fact, the boundary conditions upstream and downstream the engine are freely controlled by a separated supply air plant and by a throttle valve, located at the end of the exhaust pipe. The injection system is common-rail: rail pressure, injection timing and duration are completely adjustable.
Journal Article

Fatigue Life Predictions under General Multiaxial Loading Based on Simple Material Properties

2011-04-12
2011-01-0487
A procedure for fatigue life estimation of components and structures under variable amplitude multiaxial loadings based on simple and commonly available material properties is presented. Different aspects of the analysis consisting of load cycle counting method, plasticity model, fatigue damage parameter, and cumulative damage rule are presented. The only needed material properties for the proposed procedure are hardness and monotonic and axial cyclic deformation properties (HB, K, n, K′ and n′). Rainflow cycle counting method is used for identifying number of cycles. Non-proportional cyclic hardening is estimated from monotonic and axial cyclic deformation behaviors. A critical plane approach is used to quantify fatigue damage under variable amplitude multiaxial loading, where only material hardness is used to estimate the fatigue curve, and where the needed deformation response is estimated based on Tanaka's non-proportionality parameter.
Journal Article

Axial and Bending Fatigue of a Medium Carbon Steel Including Geometry and Residual Stress Effects

2009-04-20
2009-01-0422
This paper discusses the effects of changes in specimen geometry, stress gradient, and residual stresses on fully-reversed constant amplitude uniaxial fatigue behavior of a medium carbon steel. Axial fatigue tests were performed on both flat and round specimens, while four-point rotating bending tests were performed only on round specimens. All the tests were performed using shot peened and unpeened flat and round samples, to investigate the effects of compressive residual stresses on fatigue behavior. The specimens in the rotating bending tests experienced longer life for a given stress amplitude than in the axial test. Shot-peening was found to be beneficial in the long life region, while in short life tests the shot-peened samples experienced a shorter life than the unpeened samples under both axial and bending test conditions.
Technical Paper

Reliability Estimation of Large-Scale Dynamic Systems by using Re-analysis and Tail Modeling

2009-04-20
2009-01-0200
Probabilistic studies can be prohibitively expensive because they require repeated finite element analyses of large models. Re-analysis methods have been proposed with the premise to estimate accurately the dynamic response of a structure after a baseline design has been modified, without recalculating the new response. Although these methods increase computational efficiency, they are still not efficient enough for probabilistic analysis of large-scale dynamic systems with low failure probabilities (less or equal to 10-3). This paper presents a methodology that uses deterministic and probabilistic re-analysis methods to generate sample points of the response. Subsequently, tail modeling is used to estimate the right tail of the response PDF and the probability of failure a highly reliable system. The methodology is demonstrated on probabilistic vibration analysis of a realistic vehicle FE model.
Technical Paper

Imprecise Reliability Assessment When the Type of the Probability Distribution of the Random Variables is Unknown

2009-04-20
2009-01-0199
In reliability design, often, there is scarce data for constructing probabilistic models. It is particularly challenging to model uncertainty in variables when the type of their probability distribution is unknown. Moreover, it is expensive to estimate the upper and lower bounds of the reliability of a system involving such variables. A method for modeling uncertainty by using Polynomial Chaos Expansion is presented. The method requires specifying bounds for statistical summaries such as the first four moments and credible intervals. A constrained optimization problem, in which decision variables are the coefficients of the Polynomial Chaos Expansion approximation, is formulated and solved in order to estimate the minimum and maximum values of a system’s reliability. This problem is solved efficiently by employing a probabilistic re-analysis approach to approximate the system reliability as a function of the moments of the random variables.
Technical Paper

Diesel Spray Penetration and Velocity Measurements

2008-10-06
2008-01-2478
This study is presenting a comparative spray study of modern large bore medium speed diesel engine common rail injectors. One subject of paper is to focus on nozzles with same nominal flow rate, but different machining. The other subject is penetration velocity measurements, which have a new approach when trying to understand the early phase of transient spray. A new method to use velocimetry for spray tip penetration measurements is here introduced. The length where spray penetration velocity is changed is found. This length seems to have clear connection to volume fraction of droplets at gas. These measurements also give a tool to divide the development of spray into acceleration region and deceleration region, which is one approach to spray penetration. The measurements were performed with backlight imaging in pressurized injection test rig at non-evaporative conditions. Gas density and injection pressure were matched to normal diesel engine operational conditions.
Technical Paper

Optical In-Cylinder Measurements of a Large-Bore Medium-Speed Diesel Engine

2008-10-06
2008-01-2477
The objective of this study was to build up an optical access into a large bore medium-speed research engine and carry out the first fuel spray Particle Image Velocimetry (PIV) measurements in the running large bore medium-speed engine in high pressure environment. The aim was also to measure spray penetration with same optical access and apparatus. The measurements were performed in a single-cylinder large bore medium-speed research engine, the Extreme Value Engine (EVE) with optical access into the combustion chamber. The authors are not aware of any other studies on optical spray measurements in large bore medium-speed diesel engines. Successful optical measurements of the fuel spray penetration and the velocity fields were carried out. This confirms that the exceptional component design and laser sheet alignment used in this study proved to be valid for optical fuel spray measurements in large-bore medium-speed diesel engines.
Journal Article

Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine

2008-10-06
2008-01-2500
Hydrotreating of vegetable oils or animal fats is an alternative process to esterification for producing biobased diesel fuels. Hydrotreated products are also called renewable diesel fuels. Hydrotreated vegetable oils (HVO) do not have the detrimental effects of ester-type biodiesel fuels, like increased NOx emission, deposit formation, storage stability problems, more rapid aging of engine oil or poor cold properties. HVOs are straight chain paraffinic hydrocarbons that are free of aromatics, oxygen and sulfur and have high cetane numbers. In this paper, NOx - particulate emission trade-off and NOx - fuel consumption trade-off are studied using different fuel injection timings in a turbocharged charge air cooled common rail heavy duty diesel engine. Tested fuels were sulfur free diesel fuel, neat HVO, and a 30% HVO + 70% diesel fuel blend. The study shows that there is potential for optimizing engine settings together with enhanced fuel composition.
Journal Article

Efficient Re-Analysis Methodology for Probabilistic Vibration of Large-Scale Structures

2008-04-14
2008-01-0216
It is challenging to perform probabilistic analysis and design of large-scale structures because probabilistic analysis requires repeated finite element analyses of large models and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability based design optimization of large scale structures that consists of two re-analysis methods; one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite element models consisting of tens or hundreds of thousand degrees of freedom and large numbers of design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for many probability distributions of the design variables by performing a single Monte Carlo simulation.
Journal Article

Probabilistic Reanalysis Using Monte Carlo Simulation

2008-04-14
2008-01-0215
An approach for Probabilistic Reanalysis (PRA) of a system is presented. PRA calculates very efficiently the system reliability or the average value of an attribute of a design for many probability distributions of the input variables, by performing a single Monte Carlo simulation. In addition, PRA calculates the sensitivity derivatives of the reliability to the parameters of the probability distributions. The approach is useful for analysis problems where reliability bounds need to be calculated because the probability distribution of the input variables is uncertain or for design problems where the design variables are random. The accuracy and efficiency of PRA is demonstrated on vibration analysis of a car and on system reliability-based optimization (RBDO) of an internal combustion engine.
Journal Article

Optimization of a Forged Steel Crankshaft Subject to Dynamic Loading

2008-04-14
2008-01-0432
In this study a dynamic simulation was conducted on a forged steel crankshaft from a single cylinder four stroke engine. Finite element analysis was performed to obtain the variation of the stress magnitude at critical locations. The dynamic analysis resulted in the development of the load spectrum applied to the crankpin bearing. This load was then applied to the FE model and boundary conditions were applied according to the engine mounting conditions. Results obtained from the aforementioned analysis were then used in optimization of the forged steel crankshaft. Geometry, material, and manufacturing processes were optimized using different geometric constraints, manufacturing feasibility, and cost. The first step in the optimization process was weight reduction of the component considering dynamic loading. This required the stress range under dynamic loading not to exceed the magnitude of the stress range in the original crankshaft.
Journal Article

Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on Tensile, Impact, and Fatigue Properties of SAE 4140 Steel

2008-04-14
2008-01-0434
During metal forming processes such as rolling and forging, deformable manganese sulfide (MnS) inclusions become elongated. Such elongated MnS inclusions can have considerable adverse effects on mechanical properties, if the inclusions are not aligned with the loading direction. The objectives of this study were to evaluate and compare fatigue, monotonic tensile and CVN impact behavior of SAE 4140 steel with high (0.077% S), low (0.012% S) and ultra low (0.004% S) sulfur contents at two hardness levels (40 HRC and 50 HRC). The longitudinally oriented samples at 40 HRC, where MnS inclusions were oriented along the loading direction, did not exhibit any significant sensitivity of tensile or fatigue properties to the sulfur content. For the transversely oriented MnS inclusions, however, the monotonic tensile test results indicate very low ductility of the high sulfur material at both hardness levels, where specimens failed shortly after yielding.
Technical Paper

Particle Image Velocimetry Measurements of a Diesel Spray

2008-04-14
2008-01-0942
The current study was focused on flow field measurements of diesel sprays. The global fuel spray characteristics, such as spray penetration, have also been measured. Particle Image Velocimetry (PIV) was utilized for flow field measurements and the global spray characteristics were recorded with high-speed back light photographing. The flow field was scanned to get an idea of the compatibility of PIV technique applied to dense and high velocity sprays. It is well proven that the PIV technique can be utilized at areas of low number density of droplets, but the center of the spray is way beyond the ideal PIV measurement conditions. The depth at which accurate flow field information can be gathered was paid attention to.
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

Dynamic Load and Stress Analysis of a Crankshaft

2007-04-16
2007-01-0258
In this study a dynamic simulation was conducted on a crankshaft from a single cylinder four stroke engine. Finite element analysis was performed to obtain the variation of stress magnitude at critical locations. The pressure-volume diagram was used to calculate the load boundary condition in dynamic simulation model, and other simulation inputs were taken from the engine specification chart. The dynamic analysis was done analytically and was verified by simulation in ADAMS which resulted in the load spectrum applied to crank pin bearing. This load was applied to the FE model in ABAQUS, and boundary conditions were applied according to the engine mounting conditions. The analysis was done for different engine speeds and as a result critical engine speed and critical region on the crankshaft were obtained. Stress variation over the engine cycle and the effect of torsional load in the analysis were investigated.
Technical Paper

Assessment of Imprecise Reliability Using Efficient Probabilistic Reanalysis

2007-04-16
2007-01-0552
In reliability design, often, there is scarce data for constructing probabilistic models. Probabilistic models whose parameters vary in known intervals could be more suitable than Bayesian models because the former models do not require making assumptions that are not supported by the available evidence. If we use models whose parameters vary in intervals we need to calculate upper and lower bounds of the failure probability (or reliability) of a system in order to make design decisions. Monte Carlo simulation can be used for this purpose, but it is too expensive for all but very simple systems. This paper proposes an efficient Monte-Carlo simulation approach for estimation of upper and lower probabilities. This approach is based on two ideas: a) use an efficient approach for reliability reanalysis of a system, which is introduced in this paper, and b) approximate the probability distribution of the minimum and maximum failure probabilities using extreme value statistics.
Technical Paper

Fatigue Performance of Forged Steel and Ductile Cast Iron Crankshafts

2007-04-16
2007-01-1001
Fatigue is the primary cause of failure of crankshafts in internal combustion engines. The cyclic loading conditions and the stress concentrations in the crank pin fillets are unavoidable, and can result in fatigue failure. The objectives of this study were to compare the fatigue behavior of forged steel and ductile iron crankshafts from a one-cylinder engine as well as to determine if the fatigue life of a crankshaft can be accurately estimated using fatigue life predictions. Monotonic tensile tests as well as strain-controlled fatigue tests were conducted using specimens machined from the crankshafts to obtain the monotonic and cyclic deformation behavior and fatigue properties of the two materials. The forged steel had higher tensile strength and better fatigue performance than the ductile cast iron. Charpy v-notch impact tests were also conducted using specimens machined from the crankshafts to obtain and compare the impact toughness of the materials.
Technical Paper

Near Nozzle Diesel Spray Modeling and X-Ray Measurements

2006-04-03
2006-01-1390
In this paper the KH-RT and the CAB droplet breakup models are analyzed. The focus is on near nozzle spray simulation data that will be qualitatively compared with results obtained from x-ray experiments. Furthermore, the suitability of the x-ray method for spray studies is assessed and its importance for droplet breakup modeling is discussed. The simulations have been carried out with the Kiva3VRel2 CFD-code into which the KH-RT- and the CAB- droplet breakup models have been implemented. Since the x-ray method gives an integrated line-of-sight mass distribution of the spray, a suitable comparison of the experimental distributions and the simulated ones is made. Additionally, modeling aspects are discussed and the functioning of the models demonstrated by illustrating how the parcel Weber numbers and radii vary spatially. The transient nature of the phenomenon is highlighted and the influence of the breakup model parameters is discussed.
Technical Paper

Influence of the Piston Inter-ring Pressure on the Ring Pack Behaviour in a Medium Speed Diesel Engine

2005-10-24
2005-01-3847
The present work aims to determine the gas pressure acting in the ring pack area in a medium-speed four stroke diesel engine. The experimental part of the study was carried out as firing engine tests, with an instrumented piston, with telemetric data transmission, and an instrumented cylinder liner in a 6-cylinder test engine. The results, in terms of inter-ring gas pressure are compared with the results of computer simulations. Moreover, the computer simulations were carried out to predict and compare the effects of the piston running clearance and the ring face wear on the inter-ring pressures. The study comprises aspects on inter-ring pressures under a set of loads. The measured inter-ring gas pressures indicate steady ring operation. The simulation results show good agreement with measurement results.
X