Refine Your Search

Topic

Search Results

Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

Analysis and Design of Suspension State Observer for Wheel Load Estimation

2024-04-09
2024-01-2285
Tire forces and moments play an important role in vehicle dynamics and safety. X-by-wire chassis components including active suspension, electronic powered steering, by-wire braking, etc can take the tire forces as inputs to improve vehicle’s dynamic performance. In order to measure the accurate dynamic wheel load, most of the researches focused on the kinematic parameters such as body longitudinal and lateral acceleration, load transfer and etc. In this paper, the authors focus on the suspension system, avoiding the dependence on accurate mass and aerodynamics model of the whole vehicle. The geometry of the suspension is equated by the spatial parallel mechanism model (RSSR model), which improves the calculation speed while ensuring the accuracy. A suspension force observer is created, which contains parameters including spring damper compression length, push rod force, knuckle accelerations, etc., combing the kinematic and dynamic characteristic of the vehicle.
Technical Paper

Multicast Transmission in DDS Based on the Client-Server Discovery Model

2024-04-09
2024-01-2392
The functions of modern intelligent connected vehicles are becoming increasingly complex and diverse, and software plays an important role in these advanced features. In order to decouple the software and the hardware and improve the portability and reusability of code, Service-Oriented Architecture (SOA) has been introduced into the automotive industry. Data Distribution Service (DDS) is a widely used communication middleware which provides APIs for service-oriented Remote Procedure Call (RPC) and Service-Oriented Communications (SOC). By using DDS, application developers can flexibly define the data format according to their needs and transfer them more conveniently by publishing and subscribing to the corresponding topic. However, current open source DDS protocols all use unicast communication during the transmission of user data. When there are multiple data readers subscribing to the same topic, the data writer needs to send a unicast message to each data reader individually.
Technical Paper

Optimization of Cold Start Performance of Diesel Engine Under Low Temperature and High Altitude Environment

2024-04-09
2024-01-2455
The problem of keeping the stable starting performance of diesel engine under high altitude and low temperature conditions has been done a lot of research in the field of diesel engine, but there is a lack of research on extreme conditions such as above 2000 meters above sea level and below 0°C. Aiming at solving the cold start problem of diesel engine in extreme environment, a set of chamber system of cold start environment diesel engine was constructed to simulate environment of 3000m altitude and -20°C. A series of experimental research was conducted on cold start efficiency optimization strategy of a certain type of diesel engine at 3000m altitude and -20°C. In parallel, a diesel engine model was constructed through Chemkin to explore the influence of the three parameters of compression ratio, stroke length, and fuel injection advance angle on the first cold start cycle of diesel engine at 4000m altitude and -20°C.
Technical Paper

Electro-Hydraulic Composite Braking Control Optimization for Front-Wheel-Driven Electric Vehicles Equipped with Integrated Electro-Hydraulic Braking System

2023-11-05
2023-01-1864
With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions.
Technical Paper

Research on Cold Start Strategy of Vehicle Multi-Stack Fuel Cell System

2023-10-30
2023-01-7036
To study the cold start of muti-stack fuel cell system (MFCS), a novel thermal management subsystem structure and corresponding cold start strategies are proposed. Firstly, leveraging the distinctive configuration of the MFCS that can be sequentially initiated, we augmented the existing thermal management subsystem with the incorporation of two additional collection valves and two bypass diverter valves, which affords an increased degree of flexibility in the formulation of cold-start strategies. Secondly, we innovatively propose a hierarchical auxiliary heating cold start strategy and an average auxiliary heating cold start tailored for MFCS consisting of power levels of 20 kW, 70 kW, and 120 kW. Furthermore, we have developed a controller to address temperature control challenges during the start-up process.
Technical Paper

Noise Reduction Method of Induction Motor Based on Periodic Signal-Based Modulation Considering Frequency Band Characteristics of Electromagnetic Force

2023-04-11
2023-01-0534
This paper aims at the problem that the sideband vibration noise of induction motor caused by inverter pulse width modulation (PWM). The frequency distribution characteristics of the induction motor with 36 stator slots and 32 rotor slots (36/32 IM) are analyzed. Based on that, a frequency width selection method for the periodic signal-based modulation considering the characteristics of sideband electromagnetic force. Results show that this method can effectively reduce the peak value of the sound power level (SWL) of sideband noise of IM at different speeds. This method is also applicable to IMs with different pole-slot match.
Technical Paper

A Novel Test Platform for Automated Vehicles Considering the Interactive Behavior of Multi-Intelligence Vehicles

2023-04-11
2023-01-0921
With the popularity of automated vehicles, the future mixed traffic flow contains automated vehicles with different degrees of intelligence developed by other manufacturers. Therefore, simulating the interaction behavior of automated vehicles with varying levels of intelligence is crucial for testing and evaluating autonomous driving systems. Since the algorithm of traffic vehicles with various intelligence levels is difficult to obtain, it leads to hardships in quantitatively characterizing their interaction behaviors. Therefore, this paper designs a new automated vehicle test platform to solve the problem. The intelligent vehicle testbed with multiple personalized in-vehicle control units in the loop consists of three parts: 1. Multiple controllers in the loop to simulate the behavior of traffic vehicles;2. The central console applies digital twin technology to share the same traffic scenario between the tested vehicle and the traffic vehicle, creating a mixed traffic flow. 3.
Technical Paper

Dynamic Switch Control of Steering Modes for 4WID-4WIS Electric Vehicle Based on MOEA/D Optimization

2023-04-11
2023-01-0641
To overcome the shortcoming that vehicles with multiple steering modes need to switch steering modes at parking or very low speeds, a dynamic switch method of steering modes based on MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) was proposed for 4WID-4WIS (Four Wheel Independent Drive-Four Wheel Independent Steering) electric vehicle, considering the smoothness of dynamic switch, the lateral stability of the vehicle and the energy economy of tires. First of all, the vehicle model of 4WID-4WIS was established, and steering modes were introduced and analyzed. Secondly, the conditions for the dynamic switch of steering modes were designed with the goal of stability and safety. According to different constraints, the control strategy was formulated to obtain the target angle of the active wheels. Then aiming at the smoothness of the dynamic switch, the active wheel angle trajectory was constructed based on the B-spline theory.
Technical Paper

Emission Characteristics of a Light Diesel Engine with PNA under Different Coupling Modes of EHC and Aftertreatment System

2023-04-11
2023-01-0268
With the continuous upgrading of emission regulations, NOx emission limit is becoming more and more strict, especially in the cold start phase. Passive NOx absorber (PNA) can adsorb NOx at a relatively low exhaust temperature, electrically heated catalyst (EHC) has great potential to improve exhaust gas temperature and reduce pollutant emissions of diesel engines at cold start conditions, while experimental research on the combined use of these two kinds of catalysts and the coupling mode of the electrically heated catalyst and the aftertreatment system under the cold start condition are lacking. In this paper, under a certain cold start and medium-high temperature phase, the exhaust gas temperature and emission characteristics of PNA, EHC and aftertreatment system under different coupling modes were studied.
Technical Paper

Optimization Design and Performance Verification of the Second Generation Single Motor Plug-in Hybrid System (EDU) of SAIC Motor Vehicle Company

2023-04-11
2023-01-0446
SEAT Department of SAIC Motor Vehicle Company starts innovatively applying the single motor and P2.5 configuration scheme from EDU G2(Electric Drive Unit Generation 2), which consists of six engine gears and four motor gears. EDU G2 is very compact and adaptable through the coupling design. Gear coupling make the engine and motor coordination limited, so as to the high efficiency zone of the engine and the high efficiency zone of the motor cannot match in some working conditions, which affect the performance of the vehicle. Therefore, SEAT developed the second generation of single-motor plug-in hybrid system EDU G2 Plus EDU G2(Electric Drive Unit Generation 2 Plus), which realized the decoupling design of 5 engine gears and 2 motor gears, so that the power output of engine and motor is freely. With excellent power and economic performance, the vehicle has been well received by customers.
Technical Paper

Influence of Roof Sensor System on Aerodynamics and Aero-Noise of Intelligent Vehicle

2023-04-11
2023-01-0841
The roof sensor system is an indispensable part of intelligent vehicles to observe the environment, however, it deteriorates the aerodynamic and noise performance of the vehicle. In this paper, large eddy simulation and the acoustic perturbation equation are combined to simulate the flow and sound fields of the intelligent vehicle. Firstly, test and simulation differences of aerodynamic drag and pressure coefficients on the roof and rear of the intelligent vehicle without roof sensor system are discussed. It is found that the difference in aerodynamic drag coefficient is 5.5%, and the pressure coefficients’ differences at 21 out of 24 measurement points are less than 0.05. On this basis, under the influence of the sensor system, the aerodynamic drag coefficient of the intelligent vehicle is increased by 23.4%.
Technical Paper

Experimental Study on Effect of State of Charge on Thermal Runaway Characteristics of Commercial Large-Format NCM811 Lithium-Ion Battery

2023-04-11
2023-01-0136
The application of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode-based lithium-ion batteries (LIBs) has alleviated electric vehicle range anxiety. However, the subsequent thermal safety issues limit their market acceptance. A detailed analysis of the failure evolution process for large-format LIBs is necessary to address the thermal safety issue. In this study, prismatic cells with nominal capacities of 144Ah and 125Ah are used to investigate the thermal runaway (TR) characteristics triggered by lateral overheating. Additionally, TR characteristics under two states of charge (SoCs) (100% and 5%) are discussed. Two cells with 100% SoC exhibit similar characteristics, including high failure temperature, high inhomogeneity of temperature distribution, multi-points jet fire, and significant mass loss. Two cells with 5% SoC demonstrate only a slight rupture of the safety valve and the emission of white smoke.
Technical Paper

Clutch Coordination Control for Series-Parallel DHT Mode Changing

2022-10-28
2022-01-7046
As a newly designed hybrid transmission, DHT (Dedicated Hybrid Transmission) owns the advantages of compact structure, multi-modes and excellent comprehensive performance. Compared with the traditional add-on hybrid transmission with one single motor, DHT uses one independent generator for engine starting and speed adjusting which can be largely improve the driving performance in the mode changing process. Based on the series-parallel DHT with wet clutch for power coupling, this paper firstly analyses the power coupling clutch device functionalities from the power flow viewpoint under normal and limp home condition. And for the changing process from series to parallel mode, a clutch coordination control strategy is designed by combining generator fast speed adjusting with clutch accurately pressure controlling to fulfill the fast driver intension response and clutch protection.
Technical Paper

Improved Energy Management with Vehicle Speed and Weight Recognition for Hybrid Commercial Vehicles

2022-10-28
2022-01-7052
The driving conditions of commercial logistics vehicles have the characteristics of combined urban and suburban roads with relatively fixed mileage and cargo load alteration, which affect the vehicular fuel economy. To this end, an adaptive equivalent consumption minimization strategy (A-ECMS) with vehicle speed and weight recognition is proposed to improve the fuel economy for a range-extender electric van for logistics in this work. The driving conditions are divided into nine representative groups with different vehicle speed and weight statuses, and the driving patterns are recognized with the use of the bagged trees algorithm through vehicle simulations. In order to generate the reference SOC near the optimal values, the optimal SOC trajectories under the typical driving cycles with different loads are solved by the shooting method and the optimal slopes for these nine patterns are obtained.
Research Report

Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles

2022-09-26
EPR2022020
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed.
Technical Paper

Path Planning Method for Perpendicular Parking Based on Vehicle Kinematics Model Using MPC Optimization

2022-03-29
2022-01-0085
In recent years, intelligent driving technology is being extensively studied. This paper proposes a path planning method for perpendicular parking based on vehicle kinematics model using MPC optimization, which aims to solve the perpendicular parking task. Firstly, in the case of any initial position and orientation of the vehicle, judging whether the vehicle can be parked at one step according to the location of the parking place and the width of the lane, and then calculating the starting position for parking, and use the Bezier curve to connect the initial position and the starting position. Secondly, reference parking path is calculated according to the collision constraints of the parking space. Finally, because the parking path based on the vehicle kinematics model is composed of circle arcs and straight lines, the curvature of the path is discontinuous. The reference parking path is optimized using Model Predictive Control (MPC).
Technical Paper

Adjoint-Based Model Tuning and Machine Learning Strategy for Turbulence Model Improvement

2022-03-29
2022-01-0899
As turbulence modeling has become an indispensable approach to perform flow simulation in a wide range of industrial applications, how to enhance the prediction accuracy has gained increasing attention during the past years. Of all the turbulence models, RANS is the most common choice for many OEMs due to its short turn-around time and strong robustness. However, the default setting of RANS is usually benchmarked through classical and well-studied engineering examples, not always suitable for resolving complex flows in specific circumstances. Many previous researches have suggested a small tuning in turbulence model coefficients could achieve higher accuracy on a variety of flow scenarios. Instead of adjusting parameters by trial and error from experience, this paper introduced a new data-driven method of turbulence model recalibration using adjoint solver, based on Generalized k-ω (GEKO) model, one variant of RANS.
Technical Paper

Cold Start Emission Characteristics of Diesel Engine at High Altitude and Low Temperature

2022-03-29
2022-01-0563
The diesel engine is the core in the field of engineering machine power plants. While both at home and abroad for the cold start of diesel engine, the transient emission characteristics below 0 °C and above 2000m is almost a blank. Therefore, aimed at high altitude and low-temperature environment emission characteristics of cold start, this article has carried on the systematic analysis and research. In this paper, a simulation test system for the cold start of the diesel engine at low temperature at high altitude is established. The cold start experiments of a heavy diesel engine at different ambient temperatures (10°C, 0°C, -10°C and -20°C) and different altitudes (0m, 3000m, and 4000m) is carried out. In this paper, the gas emission of the diesel engine during the speed-up period of cold start is studied.
Technical Paper

Simulation of the Internal Flow and Cavitation of Hydrous Ethanol-Gasoline Fuels in a Multi-Hole Direct Injector

2022-03-29
2022-01-0501
Hydrous ethanol not only has the advantages of high-octane number and valuable oxygen content, but also reduce the energy consumption in the production process. However, little literature investigated the internal flow and cavitation of hydrous ethanol-gasoline fuels in the multi-hole direct injector. In this simulation, a two-phase fuel flow model in injector is established based on the multi-fluid model of Euler-Euler method, and the accuracy of model is verified. On the basis of this model, the flow of different hydrous ethanol-gasoline blends is calculated under different injection conditions, and the cavitation, flow rate, and velocity at the outlet of the nozzle are predicted. Meanwhile, the influence of temperature and back pressure on the flow is also analyzed. The results show that the use of hydrous ethanol reduces the flow rate, compared with the velocity of E0, that of E10w, E20w, E50w, E85w, and E100w decreases by 10%, 12.9%, 17.6%, 20%, and 23.5%, respectively.
X