Refine Your Search

Topic

Search Results

Technical Paper

Influence of Roof Sensor System on Aerodynamics and Aero-Noise of Intelligent Vehicle

2023-04-11
2023-01-0841
The roof sensor system is an indispensable part of intelligent vehicles to observe the environment, however, it deteriorates the aerodynamic and noise performance of the vehicle. In this paper, large eddy simulation and the acoustic perturbation equation are combined to simulate the flow and sound fields of the intelligent vehicle. Firstly, test and simulation differences of aerodynamic drag and pressure coefficients on the roof and rear of the intelligent vehicle without roof sensor system are discussed. It is found that the difference in aerodynamic drag coefficient is 5.5%, and the pressure coefficients’ differences at 21 out of 24 measurement points are less than 0.05. On this basis, under the influence of the sensor system, the aerodynamic drag coefficient of the intelligent vehicle is increased by 23.4%.
Technical Paper

Experimental Study on Effect of State of Charge on Thermal Runaway Characteristics of Commercial Large-Format NCM811 Lithium-Ion Battery

2023-04-11
2023-01-0136
The application of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode-based lithium-ion batteries (LIBs) has alleviated electric vehicle range anxiety. However, the subsequent thermal safety issues limit their market acceptance. A detailed analysis of the failure evolution process for large-format LIBs is necessary to address the thermal safety issue. In this study, prismatic cells with nominal capacities of 144Ah and 125Ah are used to investigate the thermal runaway (TR) characteristics triggered by lateral overheating. Additionally, TR characteristics under two states of charge (SoCs) (100% and 5%) are discussed. Two cells with 100% SoC exhibit similar characteristics, including high failure temperature, high inhomogeneity of temperature distribution, multi-points jet fire, and significant mass loss. Two cells with 5% SoC demonstrate only a slight rupture of the safety valve and the emission of white smoke.
Technical Paper

Performance Limitations Analysis of Visual Sensors in Low Light Conditions Based on Field Test

2022-12-22
2022-01-7086
Visual sensors are widely used in autonomous vehicles (AVs) for object detection due to the advantages of abundant information and low-cost. But the performance of visual sensors is highly affected by low light conditions when AVs driving at nighttime and in the tunnel. The low light conditions decrease the image quality and the performance of object detection, and may cause safety of the intended functionality (SOTIF) problems. Therefore, to analyze the performance limitations of visual sensors in low light conditions, a controlled light experiment on a proving ground is designed. The influences of low light conditions on the two-stage algorithm and the single-stage algorithm are compared and analyzed quantificationally by constructing an evaluation index set from three aspects of missing detection, classification, and positioning accuracy.
Research Report

Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles

2022-09-26
EPR2022020
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed.
Technical Paper

Review on Uncertainty Estimation in Deep-Learning-Based Environment Perception of Intelligent Vehicles

2022-06-28
2022-01-7026
Deep neural network models have been widely used for environment perception of intelligent vehicles. However, due to models’ innate probabilistic property, the lack of transparency, and sensitivity to data, perception results have inevitable uncertainties. To compensate for the weakness of probabilistic models, many pieces of research have been proposed to analyze and quantify such uncertainties. For safety-critical intelligent vehicles, the uncertainty analysis of data and models for environment perception is especially important. Uncertainty estimation can be a way to quantify the risk of environment perception. In this regard, it is essential to deliver a comprehensive survey. This work presents a comprehensive overview of uncertainty estimation in deep neural networks for environment perception of intelligent vehicles.
Journal Article

Effect of Geometric Parameters on Folding of Thin-Walled Steel Tube under Axial Compression

2022-03-29
2022-01-0264
This study investigated the plastic deformation behavior of 304 stainless steel thin-walled tubes under axial compression by means of numerical calculation and theoretical analysis. It was found that the plastic deformation length of thin-walled tube determined the formability of folds and the work done in the whole axial compression process. To reveal the relation between the range of plastic deformation length and tube geometry parameters, regression equations were established using the quadratic regression orthogonal design method. Experiments were conducted to validate the equations. The process windows for forming a single fold and tube joining at ends had been printed ultimately. The results showed that the regression equations can accurately predict the range of plastic deformation length for forming a single fold.
Technical Paper

LiDAR-Based High-Accuracy Parking Slot Search, Detection, and Tracking

2020-12-29
2020-01-5168
The accuracy of parking slot detection is a challenge for the safety of the Automated Valet Parking (AVP), while traditional methods of range sensor-based parking slot detection have mostly focused on the detection rate in a scenario, where the ego-vehicle must pass by the slot. This paper uses three-dimensional Light Detection And Ranging (3D LiDAR) to efficiently search parking slots around without passing by them and highlights the accuracy of detecting and tracking. For this purpose, a universal process of 3D LiDAR-based high-accuracy slot perception is proposed in this paper. First, the method Minimum Spanning Tree (MST) is applied to sort obstacles, and Separating Axis Theorem (SAT) are applied to the bounding boxes of obstacles in the bird’s-eye view, to find a free space between two adjacent obstacles. These bounding boxes are obtained by using common point cloud processing methods.
Technical Paper

DC/DC Modeling and Current Harmonic Analysis in Fuel Cell Hybrid Power System

2019-04-02
2019-01-0375
Fuel cells directly convert the energy stored in hydrogen into electrical energy through an electrochemical reaction, and the only reaction product is water, which can improve the energy efficiency and reduce the pollution caused by fossil fuels. The fuel cell hybrid power system used in vehicles usually consists of a fuel cell stack and a power battery module, and the DC/DC converter is the key component to connect them together. The current ripples caused by the system have been confirmed to have detrimental effects on the fuel cell’s reliability and lifespan. In addition, it is one of the key factors that reduce the system efficiency. So, it is necessary to analyze the current ripple in the system and maintain it at a low level. In this paper, a brief review on the different kinds of converters used in vehicles has been made. Then, with the help of MATLAB/SIMULINK, a simulation model of the hybrid power system based on 4-phase interleaved parallel topology is established.
Technical Paper

State-of-the-Art and Development Trends of Energy Management Strategies for Intelligent and Connected New Energy Vehicles: A Review

2019-04-02
2019-01-1216
Intelligent and connected vehicle (ICV) and new energy vehicle (NEV) will be two important directions of the automotive technology in the future, and the coordinated development of these two directions reflects relevantly the higher requirements put forward by nowadays society and people. Through the use of intelligent and connected technology (ICT), NEVs can exchange various traffic information data with the outside world (e.g. other running vehicles, road infrastructure, internet, etc.) in real time, which is so-called Vehicle to Everything (V2X). Based on the further analysis of the mutual traffic information, the vehicles can identify the current driving conditions and predict the future driving conditions effectively, which can realize the real time optimization of the energy management strategies (EMSs) of vehicles’ powertrain system, so as to meet the driving requirements of vehicles under different driving conditions.
Technical Paper

Vehicle Sideslip Angle Estimation: A Review

2018-04-03
2018-01-0569
Vehicle sideslip angle estimation is of great importance to the vehicle stability control as it could not be measured directly by ordinary vehicle-mounted sensors. As a result, researchers worldwide have carried out comprehensive research in estimating the vehicle sideslip angle. First, as the attitude would affect the acceleration information measured by the IMU directly, different kinds of vehicle attitude estimation methods with multi-sensor fusion are presented. Then, the estimation algorithms of the vehicle sideslip angle are classified into the following three aspects: kinematic model based method, dynamic model based method, and fusion method. The characteristics of different estimation algorithms are also discussed. Finally, the conclusion and development trend of the sideslip angle estimation are prospected.
Technical Paper

Optimization Design of Rear-Engine Bus Cooling System Based on 1D/3D Coupling Simulation

2018-04-03
2018-01-0771
This study investigated the effects of underhood structure parameters (two types of air ducts, two types of inlet grilles and the opening angle of inlet grilles) on the cooling characteristics of the rear-engine bus; then, the optimum design scheme of the underhood was determined. The air-side resistance load of the cooling system, which is based on fan performance, was selected as the optimization objective. Simulations were created based on a porous media model and standard a k-ε model. The next step was to build a 1D/3D coupling simulation to utilize the advantages of 1D simulation’s fast convergence speed and 3D simulation’s extensive research range. Besides, the use of 1D/3D coupling simulation can efficiently avoid the errors of simulation results which arise from the non-uniform airflow on the cooling module. Results show that the airflow rate of the rectangular air duct increased by 7 to 11percent.
Technical Paper

Modeling and Numerical Analysis of Automotive Aerodynamic Noise Generation and Transmission Considering Equivalent Nonlinear Sealing

2018-04-03
2018-01-0469
Aerodynamic noise transmits through automotive window, causing great adverse influence on comfortability and noise-vibration-harshness (NVH) performance. However, the complicated external turbulent air flow, as well as the internal metal-rubber nonlinear sealing constraint, makes the mechanism of aerodynamic noise generation and transmission very difficult. Regarding the complex exterior aerodynamics-induced load and nonlinear metal-rubber interaction and constraint, an efficient two-step numerical prediction method is presented in order to study the mechanism of its generation and transmission. The first step uses the commercial ANSYS-Fluent computational fluid dynamics (CFD) analysis based on the shear stress transport (SST) - turbulence kinetic energy (k) - the rate of dissipation of turbulence kinetic energy ε (epsilon) model and Lighthill’s noise source theory.
Journal Article

Re-Design for Automotive Window Seal Considering High Speed Fluid-Structure Interaction

2017-04-11
2017-01-9452
Automotive window seal has great influence on NVH (Noise-Vibration-Harshness) performance. The aerodynamic effect on ride comfort has attracted increasing research interest recently. A new method for quantifying and transferring aerodynamics-induced load on window seal re-design is proposed. Firstly, by SST (Shear Stress Transport) turbulence model, external turbulent flow field of full scale automotive is established by solving three-dimensional, steady and uncompressible Navier-Stokes equation. With re-exploited mapping algorithm, the aerodynamics pressure on overall auto-body is retrieved and transferred to local glass area to be external loads for seals, thus taking into account the aerodynamics effect of high speed fluid-structure interaction. This method is successfully applied on automotive front window seal design. The re-design header seal decreases the maximum displacements of leeward and windward glass with 9.3% and 34.21%, respectively.
Journal Article

Numerical Models for PEMFC Cold Start: A Review

2017-03-28
2017-01-1182
Startup from subzero temperature is one of the major challenges for polymer electrolyte membrane fuel cell (PEMFC) to realize commercialization. Below the freezing point (0°C), water will freeze easily, which blocks the reactant gases into the reaction sites, thus leading to the start failure and material degradation. Therefore, for PEMFC in vehicle application, finding suitable ways to reach successful startup from subfreezing environment is a prerequisite. As it’s difficult and complex for experimental studies to measure the internal quantities, mathematical models are the effective ways to study the detailed transport process and physical phenomenon, which make it possible to achieve detailed prediction of the inner life of the cell. However, review papers only on cold start numerical models are not available. In this study, an extensive review on cold start models is summarized featuring the states and phase changes of water, heat and mass transfer.
Technical Paper

Analysis on Fatigue Load and Life about the Frame of a Low-Speed Electric Vehicle Based on Multi-Body Dynamics

2017-03-28
2017-01-0334
The frame of a low-speed electric vehicle was treated as the research object in the paper. The fatigue load of the frame was analyzed with multi-body dynamics method and the fatigue life of frame was analyzed with the nominal stress method. Firstly, the multi-body dynamics model of the vehicle was established and the multi-body dynamics simulation was carried out to simulate the condition where the vehicle used to travel. The fatigue load history of the frame was obtained from the simulation. Secondly, the amplitude-frequency characteristic of the fatigue load was analyzed. The frequency of the fatigue load mainly focused on 0~20HZ from the analysis. Thirdly, the modal of frame was analyzed. As the frequency of the fatigue load was less than the natural frequency of the frame, the quasi-static method was selected to calculate the stress history of the frame. Next, the fatigue life of the frame was analyzed based on S-N curve.
Technical Paper

A Study of Parameter Inconsistency Evolution Pattern in Parallel-Connected Battery Modules

2017-03-28
2017-01-1194
Parallel-connected modules have been widely used in battery packs for electric vehicles nowadays. Unlike series-connected modules, the direct state inconsistency caused by parameter inconsistency in parallel modules is current and temperature non-uniformity, thus resulting in the inconsistency in the speed of aging among cells. Consequently, the evolution pattern of parameter inconsistency is different from that of series-connected modules. Since it’s practically impossible to monitor each cell’s current and temperature information in battery packs, considering cost and energy efficiency, it’s necessary to study how the parameter inconsistency evolves in parallel modules considering the initial parameter distribution, topology design and working condition. In this study, we assigned cells of 18650 format into several groups regarding the degree of capacity and resistance inconsistency. Then all groups are cycled under different environmental temperature and current profile.
Journal Article

Effects of Installation Environment on Flow around Rear View Mirror

2017-03-28
2017-01-1517
External rear view mirror is attached at the side of the vehicle which is to permit clear vision for the driver to the rear of the vehicle. When the vehicle is running, the flow field around external rear view mirror is highly three-dimensional, unsteady, separated and turbulent which is known to be a significant source of aerodynamic noise and a contributor to the total drag force on the vehicle. While among all the researches on the flow field around external rear view mirror, different installation environment were employed. The external rear view mirror is mounted on a production car in most researches which presents the real condition and it can also be mounted on the ground of a wind tunnel, a specially designed table, or a generic vehicle model based on the SAE model. While, the relationship between the flow field around external rear view mirror and the installation environment is not very clear.
Technical Paper

Numerical Investigation of Geometry Effects on Flow, Heat Transfer and Defrosting Characteristics of a Simplified Automobile Windshield with a Single Row of Impinging Jets

2016-04-05
2016-01-0208
The effect of jet geometry on flow, heat transfer and defrosting characteristics was numerically investigated for elliptic and rectangular impinging jets on an automobile windshield. Initially, various turbulence models within the commercial computational fluid dynamics (CFD) package FLUENT were employed and validated for a single jet, and the results indicated that the impinging jet heat transfer was more accurately predicted by the SST k -ω turbulence model, which was then utilized for this study. The aspect ratios (AR) of elliptic and rectangular jets were respectively 0.5, 1.0, and 2.0, with jet-to-target spacing h/d=2, 4 and jet-to-jet spacing c/d=4, and all those situations were numerically analyzed with the same air mass flow and jet open area. It was observed that the heat transfer coefficient and defrosting performance of the inclined windshield were significantly affected by the shape of the jet, and the best results were obtained with the elliptic jet arrangements.
Technical Paper

Defrost Efficiency Analysis of PMMA Rear Window

2016-04-05
2016-01-0511
As a potential material for lightweight vehicle, polymethyl methacrylate (PMMA) has proven to perform well in optical behavior and weather resistance. However, the application in automotive glazing has seldom been studied. This paper investigates the defrost performance of PMMA rear window using both numerical and experimental methods. The finite element analysis (FEA) results were found to be in good agreement with the experimental data. Based on the validated finite element model, we further optimized the defrost efficiency by changing the arrangement of heating lines. The results demonstrated the frost layer on the vision-related region of PMMA rear window can melt within 30 minutes, which meets the requirement of defrost efficiency.
Journal Article

Analysis of Friction Induced Stability, Bifurcation, Chaos, Stick-slip Vibration and their Impacts on Wiping Effect of Automotive Wiper System

2014-04-01
2014-01-0021
A 2 DOF nonlinear dynamic model of the automotive wiper system is established. Complex eigenvalues are calculated based on the complex modal theory, and the system stability as well as its dependence on wiping velocity is analyzed. Bifurcation characteristics of frictional self-excited vibration and stick-slip vibration relative to wiping velocity are studied through numerical analysis. Research of nonlinear vibration characteristics under various wiping velocities is conducted by means of phase trajectories, Poincaré map and frequency spectrum. The pervasive stick-slip vibration during wiping is confirmed, and its temporal and spatial distributions are analyzed by way of time history and contour map. Duty ratio of stick vibration and statistics of scraping residual are introduced as quantitative indexes for wiping effect evaluation. Results indicate that the negative slop of frictional-velocity characteristic is the root cause of system instability.
X