Refine Your Search

Topic

Search Results

Technical Paper

Multicast Transmission in DDS Based on the Client-Server Discovery Model

2024-04-09
2024-01-2392
The functions of modern intelligent connected vehicles are becoming increasingly complex and diverse, and software plays an important role in these advanced features. In order to decouple the software and the hardware and improve the portability and reusability of code, Service-Oriented Architecture (SOA) has been introduced into the automotive industry. Data Distribution Service (DDS) is a widely used communication middleware which provides APIs for service-oriented Remote Procedure Call (RPC) and Service-Oriented Communications (SOC). By using DDS, application developers can flexibly define the data format according to their needs and transfer them more conveniently by publishing and subscribing to the corresponding topic. However, current open source DDS protocols all use unicast communication during the transmission of user data. When there are multiple data readers subscribing to the same topic, the data writer needs to send a unicast message to each data reader individually.
Technical Paper

Electro-Hydraulic Composite Braking Control Optimization for Front-Wheel-Driven Electric Vehicles Equipped with Integrated Electro-Hydraulic Braking System

2023-11-05
2023-01-1864
With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Noise Reduction Method of Induction Motor Based on Periodic Signal-Based Modulation Considering Frequency Band Characteristics of Electromagnetic Force

2023-04-11
2023-01-0534
This paper aims at the problem that the sideband vibration noise of induction motor caused by inverter pulse width modulation (PWM). The frequency distribution characteristics of the induction motor with 36 stator slots and 32 rotor slots (36/32 IM) are analyzed. Based on that, a frequency width selection method for the periodic signal-based modulation considering the characteristics of sideband electromagnetic force. Results show that this method can effectively reduce the peak value of the sound power level (SWL) of sideband noise of IM at different speeds. This method is also applicable to IMs with different pole-slot match.
Technical Paper

A Novel Test Platform for Automated Vehicles Considering the Interactive Behavior of Multi-Intelligence Vehicles

2023-04-11
2023-01-0921
With the popularity of automated vehicles, the future mixed traffic flow contains automated vehicles with different degrees of intelligence developed by other manufacturers. Therefore, simulating the interaction behavior of automated vehicles with varying levels of intelligence is crucial for testing and evaluating autonomous driving systems. Since the algorithm of traffic vehicles with various intelligence levels is difficult to obtain, it leads to hardships in quantitatively characterizing their interaction behaviors. Therefore, this paper designs a new automated vehicle test platform to solve the problem. The intelligent vehicle testbed with multiple personalized in-vehicle control units in the loop consists of three parts: 1. Multiple controllers in the loop to simulate the behavior of traffic vehicles;2. The central console applies digital twin technology to share the same traffic scenario between the tested vehicle and the traffic vehicle, creating a mixed traffic flow. 3.
Technical Paper

Dynamic Switch Control of Steering Modes for 4WID-4WIS Electric Vehicle Based on MOEA/D Optimization

2023-04-11
2023-01-0641
To overcome the shortcoming that vehicles with multiple steering modes need to switch steering modes at parking or very low speeds, a dynamic switch method of steering modes based on MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) was proposed for 4WID-4WIS (Four Wheel Independent Drive-Four Wheel Independent Steering) electric vehicle, considering the smoothness of dynamic switch, the lateral stability of the vehicle and the energy economy of tires. First of all, the vehicle model of 4WID-4WIS was established, and steering modes were introduced and analyzed. Secondly, the conditions for the dynamic switch of steering modes were designed with the goal of stability and safety. According to different constraints, the control strategy was formulated to obtain the target angle of the active wheels. Then aiming at the smoothness of the dynamic switch, the active wheel angle trajectory was constructed based on the B-spline theory.
Technical Paper

Study on the Diffusion Law of Electric Vehicle Sharing in Complex Social Network Environment

2023-04-11
2023-01-0889
Electric vehicle sharing (EVS) can alleviate traffic congestion and reduce emissions. However, the poor user experience and lack of word-of-mouth effect lead to the low utilization rate of EVS in China. Based on the demand and pain points of EVS, this paper concentrates on travel mode choice behavior of consumers under social networks and establishes an agent-based model for EVS diffusion. The results show that: (1) Social networks can promote the diffusion of EVS and the number of opinion leaders and the number of fans of opinion leaders play an important role. (2) Consumers are more sensitive to travel costs than non-travel time now, but with the improvement of demand for travel experience, consumers are more concerned with non-travel time. (3) The non-travel time of EVS needs to be reduced to 9, 8 and 7 minutes respectively to retain users when the travel cost increases to 0.7, 0.8 and 0.9 Yuan/minute.
Technical Paper

Experimental Study on Effect of State of Charge on Thermal Runaway Characteristics of Commercial Large-Format NCM811 Lithium-Ion Battery

2023-04-11
2023-01-0136
The application of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode-based lithium-ion batteries (LIBs) has alleviated electric vehicle range anxiety. However, the subsequent thermal safety issues limit their market acceptance. A detailed analysis of the failure evolution process for large-format LIBs is necessary to address the thermal safety issue. In this study, prismatic cells with nominal capacities of 144Ah and 125Ah are used to investigate the thermal runaway (TR) characteristics triggered by lateral overheating. Additionally, TR characteristics under two states of charge (SoCs) (100% and 5%) are discussed. Two cells with 100% SoC exhibit similar characteristics, including high failure temperature, high inhomogeneity of temperature distribution, multi-points jet fire, and significant mass loss. Two cells with 5% SoC demonstrate only a slight rupture of the safety valve and the emission of white smoke.
Technical Paper

Improved Energy Management with Vehicle Speed and Weight Recognition for Hybrid Commercial Vehicles

2022-10-28
2022-01-7052
The driving conditions of commercial logistics vehicles have the characteristics of combined urban and suburban roads with relatively fixed mileage and cargo load alteration, which affect the vehicular fuel economy. To this end, an adaptive equivalent consumption minimization strategy (A-ECMS) with vehicle speed and weight recognition is proposed to improve the fuel economy for a range-extender electric van for logistics in this work. The driving conditions are divided into nine representative groups with different vehicle speed and weight statuses, and the driving patterns are recognized with the use of the bagged trees algorithm through vehicle simulations. In order to generate the reference SOC near the optimal values, the optimal SOC trajectories under the typical driving cycles with different loads are solved by the shooting method and the optimal slopes for these nine patterns are obtained.
Technical Paper

Rotor Temperature Monitoring and Torque Correction for IPMSM of New Energy Vehicle

2022-10-28
2022-01-7063
As the electric vehicle market grows rapidly, thermal analysis related to the performance of electric drive motors has gained increasing interest. However, it is hard to obtain rotor temperature for torque correction during operation which leads to unexpected inaccurate control of motors. Rotor temperature monitoring and torque correction for IPMSM (Interior Permanent Magnet Synchronous motor) of new Energy vehicles are discussed in this paper. Considering the practical application, a low-order lumped parameter thermal network (LPTN) composed of three nodes is built for calculating the rotor temperature under different operating conditions on a 160kw IPMSM of a three-in-one electric drive. To identify the parameters of LPTN, the measurements were done on a test bench with a prototype of the three-in-one electric drive. K-type thermocouples were used to directly measure the temperature of each node.
Research Report

Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles

2022-09-26
EPR2022020
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed.
Technical Paper

Simulation of the Internal Flow and Cavitation of Hydrous Ethanol-Gasoline Fuels in a Multi-Hole Direct Injector

2022-03-29
2022-01-0501
Hydrous ethanol not only has the advantages of high-octane number and valuable oxygen content, but also reduce the energy consumption in the production process. However, little literature investigated the internal flow and cavitation of hydrous ethanol-gasoline fuels in the multi-hole direct injector. In this simulation, a two-phase fuel flow model in injector is established based on the multi-fluid model of Euler-Euler method, and the accuracy of model is verified. On the basis of this model, the flow of different hydrous ethanol-gasoline blends is calculated under different injection conditions, and the cavitation, flow rate, and velocity at the outlet of the nozzle are predicted. Meanwhile, the influence of temperature and back pressure on the flow is also analyzed. The results show that the use of hydrous ethanol reduces the flow rate, compared with the velocity of E0, that of E10w, E20w, E50w, E85w, and E100w decreases by 10%, 12.9%, 17.6%, 20%, and 23.5%, respectively.
Technical Paper

Network Delay Modelling and Optimization of Internet-Based Distributed Test Platform for Fuel Cell Electric Vehicle Powertrain System

2021-12-15
2021-01-7026
The accelerated global progress in the research and development of automobile products, and the use of new technologies, such as the Internet, cloud computing and big data, to coordinate development platforms in different regions and fields, can reduce the duration and cost of development and testing. Specifically, in the context of the current coronavirus disease (COVID-19) pandemic, which has caused great obstacles to normal logistics and transportation, personnel exchanges and information communication, platforms that can support global operation are significant for product testing and validation, because they eliminate the need for the transportation of personnel and equipment. Therefore, the establishment of a distributed test and validation platform for automotive powertrain systems, which can integrate software and hardware testing, is important in terms of both scientific research and industrialization.
Technical Paper

Evaluation Method of Harmony with Traffic Based on a Backpropagation Neural Network Optimized by Mean Impact Value

2021-06-02
2021-01-5060
With the development of autonomous driving, the penetration rate of autonomous vehicles on the road will continue to grow. As a result, the social cooperation ability of autonomous vehicles will have a great effect on the social acceptance of autonomous driving, which can be described as harmony with traffic. In order to research the evaluation method of the harmony with traffic, this paper proposes a subjective and objective mapping evaluation method based on the Mean Impact Value and Backpropagation (MIV-BP) Neural Network, with the merging vehicle on the expressway ramp as the research object. Firstly, by taking 16 original objective indexes obtained by theoretical analysis and the subjective evaluation results as input and output, respectively, the BP Neural Network model is constructed as a baseline model. Secondly, nine selected objective indexes are selected by the MIV method based on the baseline model.
Technical Paper

LiDAR-Based High-Accuracy Parking Slot Search, Detection, and Tracking

2020-12-29
2020-01-5168
The accuracy of parking slot detection is a challenge for the safety of the Automated Valet Parking (AVP), while traditional methods of range sensor-based parking slot detection have mostly focused on the detection rate in a scenario, where the ego-vehicle must pass by the slot. This paper uses three-dimensional Light Detection And Ranging (3D LiDAR) to efficiently search parking slots around without passing by them and highlights the accuracy of detecting and tracking. For this purpose, a universal process of 3D LiDAR-based high-accuracy slot perception is proposed in this paper. First, the method Minimum Spanning Tree (MST) is applied to sort obstacles, and Separating Axis Theorem (SAT) are applied to the bounding boxes of obstacles in the bird’s-eye view, to find a free space between two adjacent obstacles. These bounding boxes are obtained by using common point cloud processing methods.
Technical Paper

Analysis of Vibroacoustic Behaviors and Torque Ripple of SRMs with Different Phases and Poles

2020-04-14
2020-01-0467
In this study, the vibroacoustic characteristics and torque fluctuation of switched reluctance motors (SRMs) with different phases and poles have been analyzed in detail. Also, the common four SRMs, i.e., three-phase 6/4 SRM, four-phase 8/6 SRM, five-phase 10/8 SRM, and six-phase 12/10 SRM, have been selected. First, the spatial-temporal distribution characteristics of radial force in SRMs were revealed by virtue of the analytical derivation, which was validated by the 2D Fourier decomposition based on the finite-element results of radial force. Second, a multiphysics model, which was composed of an electromagnetic field, a mechanical field, and an acoustic field, was established to predict the noise behaviors of SRMs with different phases and poles. Third, the relationship between the torque fluctuation and the phases / poles of SRMs, and the relationship between the noise and the radial force / phases / poles are all analyzed.
Technical Paper

Research on CAN FD Controller Conformance Test System

2019-11-04
2019-01-5073
The Controller Area Network with Flexible Data-Rate (CAN FD) is invented to compensate for the limited bandwidth of Controller Area Network (CAN). The technology of CAN FD bus conformance test is a prerequisite for the interconnection and normal work of different manufacturers’ CAN FD module, and is of great significance for ensuring the reliability of the CAN FD network. Firstly, the communication protocol conformance test theory is briefly analyzed and the characteristics of the CAN FD protocol are introduced in this paper. Then the test scope and test objects of CAN FD conformance test are pointed out. This paper mainly focuses on the CAN FD controller conformance test, which is belong to chip test. The controller implements the most parts of data link layer in a CAN FD module. Furthermore, the test method and the test cases are elaborated. Based on the coordinated test method, a conformance test system is designed and the hardware and software are developed for the test system.
Technical Paper

Tracking of Extended Objects with Multiple Three-Dimensional High-Resolution Automotive Millimeter Wave Radar

2019-04-02
2019-01-0122
Estimating the motion state of peripheral targets is a very important part in the environment perception of intelligent vehicles. The accurate estimation of the motion state of the peripheral targets can provide more information for the intelligent vehicle planning module which means the intelligent vehicle is able to anticipate hazards ahead of time. To get the motion state of the target accurately, the target’s range, velocity, orientation angle and yaw rate need to be estimated. Three-dimensional high-resolution automotive millimeter wave radar can measure radial range, radial velocity, azimuth angle and elevation angle about multiple reflections of an extended target. Thus, the three-dimensional range information and three-dimensional velocity information can be obtained. With multiple three-dimensional high-resolution automotive millimeter-wave radar, it is possible to measure information in various directions of a target.
Technical Paper

Model-Based Pitch Control for Distributed Drive Electric Vehicle

2019-04-02
2019-01-0451
On the dual-motor electric vehicle, which is driven by two electric motors mounted on the front and rear axles respectively, longitudinal dynamic control and electro-dynamic braking can be achieved by controlling the torque of front and rear axle motors respectively. Suspension displacement is related to the wheel torque, thus the pitch of vehicle body can be influenced by changing the torque distribution ratio. The pitch of the body has a great influence on the vehicle comfort, which occurs mainly during acceleration and braking progress. Traditionally active suspension is adopted to control the pitch of body. Instead, in this paper an ideal torque distribution strategy is developed to limit the pitch during acceleration and braking progress. This paper first explores the relationship between the torque distribution and the body pitch through the real vehicle test, which reveals the feasibility of the vehicle comfort promotion by optimizing the torque distribution coefficient.
Technical Paper

Experimental Investigation of the Bi-Stable Behavior in the Wake of a Notchback MIRA Model

2019-04-02
2019-01-0663
This paper reports an experimental investigation of the wake flow behind a 1/12 scale notchback MIRA model at Re = UL/ν = 6.9×105 (where U is free-stream velocity, L the length of the model and ν viscosity). Focus is placed on the flow asymmetry over the backlight and decklid. Forty pressure taps are used to map the surface pressure distribution on the backlight and decklid, while the wake topology is investigated by means of 2D Particle Image Velocimetry. The analysis of the instantaneous pressure signals over the notch configuration clearly shows that the pressure presents a bi-stable behavior in the spanwise direction, characterized by the switches between two preferred values, which is not found in the vertical direction.
X