Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

Efficient Fatigue Performance Dominated Optimization Method for Heavy-Duty Vehicle Suspension Brackets under Proving Ground Load

2024-04-09
2024-01-2256
Lightweight design is a key factor in general engineering design practice, however, it often conflicts with fatigue durability. This paper presents a way for improving the effectiveness of fatigue performance dominated optimization, demonstrated through a case study on suspension brackets for heavy-duty vehicles. This case study is based on random load data collected from fatigue durability tests in proving grounds, and fatigue failures of the heavy-duty vehicle suspension brackets were observed and recorded during the tests. Multi-objective fatigue optimization was introduced by employing multiaxial time-domain fatigue analysis under random loads combined with the non-dominated sorting genetic algorithm II with archives.
Technical Paper

A Method of Generating a Composite Dataset for Monitoring of Non-Driving Related Tasks

2024-04-09
2024-01-2640
Recently, several datasets have become available for occupant monitoring algorithm development, including real and synthetic datasets. However, real data acquisition is expensive and labeling is complex, while virtual data may not accurately reflect actual human physiology. To address these issues and obtain high-fidelity data for training intelligent driving monitoring systems, we have constructed a hybrid dataset that combines real driving image data with corresponding virtual data generated from 3D driving scenarios. We have also taken into account individual anthropometric measures and driving postures. Our approach not only greatly enriches the dataset by using virtual data to augment the sample size, but it also saves the need for extensive annotation efforts. Besides, we can enhance the authenticity of the virtual data by applying ergonomics techniques based on RAMSIS, which is crucial in dataset construction.
Technical Paper

Optical Investigation of Lean Combustion Characteristics of Non-Uniform Distributed Orifice Passive Pre-Chamber on a High Compression Ratio GDI Engine

2024-04-09
2024-01-2101
The passive pre-chamber (PC) is valued for its jet ignition (JI) and is suitable for wide use in the field of gasoline direct injection (GDI) for small passenger cars, which can improve the performance of lean combustion. However, the intake, exhaust, and ignition combustion stability of the engine at low speed is a shortcoming that has not been overcome. Changing the structural design to increase the fluidity of the main chamber (MC) and pre-chamber (PC) may reduce jet ignition performance, affecting engine dynamics. This investigation is based on non-uniformly nozzles distributed passive pre-chamber, which is adjusted according to the working medium exchange between PC and MC. The advantages and disadvantages of the ignition mode of PC and SI in the target engine speed range are compared through optical experiments on a small single-cylinder GDI engine.
Technical Paper

Electro-Hydraulic Composite Braking Control Optimization for Front-Wheel-Driven Electric Vehicles Equipped with Integrated Electro-Hydraulic Braking System

2023-11-05
2023-01-1864
With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Matching and Optimization Design of Electric Drive Assembly Mounting System of Electric Vehicle

2023-10-30
2023-01-7002
The design method for the powertrain mounting system in internal combustion engine vehicles is well-established. Electric vehicles experience higher vibration frequencies and more significant transient responses when accelerating or braking than fuel vehicles due to their high speed and fast response. Therefore, the design of the electric drive assembly mounting system requires further development. The modeling of electric drive assembly mounting systems often neglects the mounting bracket’s influence, which significantly affects the center of mass and rotational inertia of the electric drive assembly. This paper examines the effect of the mounting bracket in the electric drive assembly mounting system. It establishes a mathematical model with six degrees of freedom for the mounting system, considering the mounting bracket. By comparing the natural characteristics and the transient response, it is discussed whether the mass of the mounting bracket greatly influences the system.
Technical Paper

Research on Fatigue Damage of Independent Suspension Support Structure for a Commercial Vehicle Based on Load Spectrum of Basic Vehicle

2023-04-11
2023-01-0807
In this paper, an equivalent conversion method is proposed to apply the six-dimensional force road spectrum of the four-axle vehicle on the same platform to the three-axle through the axle load comparison. Further, the feasibility of the devolved equivalent conversion method is verified, and the fatigue performance improvement of the wishbone support structure of a commercial vehicle is finally achieved. Specifically, firstly, the load spectrum at each attachment point of the suspension for the three-axle vehicle is obtained through the iteration of the multi-body dynamic model. Furthermore, the finite element model of the suspension for the three-axle vehicle is established; the analysis of fatigue life for the suspension structure is performed by extracting stress amplitude through the multi-axis cyclic counting method and calculating equivalent force amplitude through McDiarmid’s criterion, combined with the SN curve of the material.
Technical Paper

Load Spectrum Extraction of Double-Wishbone Independent Suspension Bracket Based on Virtual Iteration

2023-04-11
2023-01-0774
The displacement of the shaft head fails to be accurately measured while the three-axle heavy-duty truck is driving on the reinforced pavement. In order to obtain accurate fatigue load spectrum of the suspension bracket, the acceleration signals of the shaft heads of the suspension obtained by the reinforced pavement test measurement are virtually iterated as responses. A more accurate model of the rigid-flexible coupled multi-body dynamics (MBD) of the whole vehicle is established by introducing a flexible frame based on the comprehensive modal theory. Furthermore, the vertical displacements of the shaft heads are obtained by the reverse solution of the virtual iterative method with well-pleasing precision. The accuracy of the virtual iteration is verified by comparing the simulation results with the vertical acceleration of the shaft head under the reinforced pavement in the time domain and damage domain.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

Study on Local Stress Variable Strength Design Effect of B-Pillar Structure

2023-04-11
2023-01-0082
In this paper, the principles, advantages and disadvantages of the main technology of variable strength design of automobile B-pillar Based on the finite element simulation technology, the local stress variable strength design effect of Automobile B-pillar structure is simulated, compared and evaluated. The simulation results show that with the same mechanical properties, the overall lightweight degree of B-pillar structure with variable strength design can be reduced by about 8.9%. With the expansion of the strengthening area of variable strength design of parts, the degree of lightweight of parts can be further improved. It can be seen that the local stress variable strength design method provides a new technical option for the lightweight design of automobile parts.
Technical Paper

Modeling and Study on Static Performance of the Double-Top-Foil Air Foil Journal Bearing for Air Compressors in Fuel Cell Vehicles

2023-04-11
2023-01-0870
Air foil bearings are gradually applied in air compressors in fuel cell vehicles for the advantages of high speed, oil-free and non-contact. Advanced air foil bearings with different structures are used to improve the performance of air compressor. Accurate modeling of the complex structures in air foil bearings has become a research hotspot in recent years. This paper presents a theoretical model for a double-top-foil air foil journal bearing (DAFJB) for centrifugal air compressors used in fuel cell vehicles. The foil structure is modeled by finite element method (FEM) using shell elements. Coulomb law and penalty function method are applied to model the tangential and normal behavior of the contact areas. The local contact between the middle top foil and the bump foil, the bump foil and the bearing sleeve are modeled using node-to-segment contact method. The large-area contact behavior between two layers of top foils is modeled by simplified surface-to-surface contact scheme.
Technical Paper

Multi-objective Combination Optimization of Automobile Subframe Dynamic Stiffness

2023-04-11
2023-01-0005
Subframe is an important part of automobile chassis, which is connected with body, suspension control arm, powertrain mount, etc. The dynamic stiffness value of the connection point is an important performance index of the subframe, which affects the vibration of the vehicle body. This paper introduces the basic concept and related theory of dynamic stiffness, derives the theoretical formula of dynamic stiffness, and analyzes the frequency response of the key points of the subframe. In view of the fact that the dynamic stiffness of the subframe of a certain vehicle model is not up to the standard at some connection points, the dynamic stiffness CAE simulation analysis is carried out to determine the frequency range of insufficient dynamic stiffness and the connection points that need to be optimized.
Technical Paper

Design and Structural Parameters Analysis of the Centrifugal Compressor for Automotive Fuel Cell System Based on CFD Method

2023-04-11
2023-01-0499
Electric centrifugal air compressor is one of the most important auxiliary components for the fuel cell engine, which has great impacts on the system efficiency, cost and compactness. However, the centrifugal compressor works at an ultra-high speed for a long time, which poses a great challenge to the lives of motor, bearing and seal. Therefore, reducing the rotating speed of the impeller and maintaining high pressure ratio and high efficiency are important issues for aerodynamic design of the compressor. In this paper, a centrifugal compressor rotor for a 100kW fuel cell system is designed. Aiming at reducing the rotating speed, the influences of three key structural parameters including inlet blade angle, outlet blade angle and blade outlet radius on performance are investigated. The aerodynamic performance of the compressor is predicted using the Reynolds-averaged Navier-Stokes (RANS) equations with computational fluid dynamic (CFD) tools.
Technical Paper

Optimization Design and Performance Verification of the Second Generation Single Motor Plug-in Hybrid System (EDU) of SAIC Motor Vehicle Company

2023-04-11
2023-01-0446
SEAT Department of SAIC Motor Vehicle Company starts innovatively applying the single motor and P2.5 configuration scheme from EDU G2(Electric Drive Unit Generation 2), which consists of six engine gears and four motor gears. EDU G2 is very compact and adaptable through the coupling design. Gear coupling make the engine and motor coordination limited, so as to the high efficiency zone of the engine and the high efficiency zone of the motor cannot match in some working conditions, which affect the performance of the vehicle. Therefore, SEAT developed the second generation of single-motor plug-in hybrid system EDU G2 Plus EDU G2(Electric Drive Unit Generation 2 Plus), which realized the decoupling design of 5 engine gears and 2 motor gears, so that the power output of engine and motor is freely. With excellent power and economic performance, the vehicle has been well received by customers.
Technical Paper

Experimental Study on Effect of State of Charge on Thermal Runaway Characteristics of Commercial Large-Format NCM811 Lithium-Ion Battery

2023-04-11
2023-01-0136
The application of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode-based lithium-ion batteries (LIBs) has alleviated electric vehicle range anxiety. However, the subsequent thermal safety issues limit their market acceptance. A detailed analysis of the failure evolution process for large-format LIBs is necessary to address the thermal safety issue. In this study, prismatic cells with nominal capacities of 144Ah and 125Ah are used to investigate the thermal runaway (TR) characteristics triggered by lateral overheating. Additionally, TR characteristics under two states of charge (SoCs) (100% and 5%) are discussed. Two cells with 100% SoC exhibit similar characteristics, including high failure temperature, high inhomogeneity of temperature distribution, multi-points jet fire, and significant mass loss. Two cells with 5% SoC demonstrate only a slight rupture of the safety valve and the emission of white smoke.
Journal Article

Study on Soot Oxidation Characteristics of Ce and La Modified Pt-Pd CDPF Catalysts

2023-04-11
2023-01-0390
The catalyzed diesel particulate filter with Pt and Pd noble metals as the main loaded active components are widely used in the field of automobile engines, but the high cost makes it face huge challenges. Rare earth element doping can improve the soot oxidation performance of the catalyzed diesel particulate filter and provide a new way to reduce its cost. In this paper, thermogravimetric tests and chemical reaction kinetic calculations were used to explore the effect of Pt-Pd catalysts doped Ce, and La rare earth elements on the oxidation properties of soot. The results shown that, among Pt-Pd-5%Ce, Pt-Pd-5%La, and Pt-Pd-5%Ce-5%La catalysts, Pt-Pd-5%La catalyst has the highest soot conversion, the highest low-temperature oxidation speed, and the activation energy is the smallest. Compared with soot, this catalyst reduced T10 and T20 by 82% and 26%, respectively, meaning the catalytic activity of Pt-Pd-5%La catalyst was the best.
Technical Paper

Image Recognition of Gas Diffusion Layer Structural Features Based on Artificial Intelligence

2022-10-28
2022-01-7040
Gas diffusion layer (GDL), as a critical constituent of the proton exchange membrane fuel cell (PEMFC), plays a key role in mass, heat, electron, and species transport. GDL generally has two distinct layers: a macro-porous substrate (MPS) and a micro-porous layer (MPL). The fibers in MPS and the cracks formed during the deposition process on the surface of MPL change the overall transport capacity and effect the output performance of PEMFC. In this paper, methods of identifying the structural features of fibers and cracks in GDL images based on artificial intelligence are proposed. The block probabilistic Hough transform and the quadric voting based on the weighted K-means algorithm are programmed to realize the fiber feature extraction, and the crack feature extraction is realized by the regional connectivity algorithm and the geometric feature calculation based on the circumscribed graph of the crack region.
Technical Paper

Intelligent Cockpit Operation System: Indirect Rotary Transducer for an Automotive Screen Interface

2022-05-30
2022-01-5034
Indirect rotary transducer for an automotive screen interface is an innovative solution for the smart cockpit. The primary objective of this study is to design an indirect rotary transducer system, and study its feasibility in the smart cockpit. The working theory of this designed system is that the magnetic induction hall electronic chip can detect changes in the magnetic field. Several tests have been conducted, which show that the hypothesis of dangling operating system achieves the same effect as a hard-wired operating system. The results of the experiment indicate that the magnetic induction hall sensor can meet the specification of traditional hard-wired operating system. This system is a good concept for intelligent cab driving, which can fully meet the needs of the current market.
Journal Article

Analytical Modeling of Open-Circuit Magnetic Field in Permanent Magnet Assisted Synchronous Reluctance Motors Considering Iron Bridge Saturation Effects

2022-03-29
2022-01-0731
Calculating accurately iron bridge saturation effects of the magnetic field, for Permanent Magnet Assisted Synchronous Reluctance Motors (PMASynRMs), remains to be a knotty problem. This paper presents an analytical modeling method to predict open-circuit magnetic field distributions and electromagnetic performances of PMASynRMs, considering iron bridge saturation effects. This analytical modeling method combines the magnetic equivalent circuit method, superposition principle, the solution of the governing Maxwell’s field equations and a complex relative permeance function. A quadruple-layer PMASynRM are remodeled into four surface-inserted permanent magnet synchronous motors (SPMSMs) which have different surface-inserted permanent magnets.
X