Refine Your Search

Topic

Search Results

Technical Paper

Performance Parity Study of Electrified Class 8 Semi Trucks with Diesel Counterparts

2024-04-09
2024-01-2164
It is recognized that the heavier vehicles, the more emissions, thus the more imperative to electrify. In this study, long haul heavy-duty trucks are referred as HDTs, which are recognized as one of the hard-to-electrify vehicle segments, though the automotive industry has gained trending advantages of electrifying both light-duty cars and SUVs. Since big rigs such as Class 8 HDTs have significant road-block challenges for electrification due to the demanding long-hour work cycles in all weathers, this study focuses on quantifying those electrification challenges by taking advantage of the public data of Class 8 tractors & trailers. Tesla Semi is the research target though its vehicle spec data is sorted out with fragmentary information in the public domain. The key task is to analyze the battery capacity requirements due to environmental temperature and inherent aging over the lifespan.
Technical Paper

Investigation of Injection Strategy on Combustion and Emission Characteristics in a GDI Engine with a 50 MPa Injection System

2024-04-09
2024-01-2381
A DMS500 engine exhaust particle size spectrometer was employed to characterize the effects of injection strategies on particulate emissions from a turbocharged gasoline direct injection (GDI) engine. The effects of operating parameters (injection pressure, secondary injection ratio and secondary injection end time) on particle diameter distribution and particle number density of emission were investigated. The experimental result indicates that the split injection can suppress the knocking tendency at higher engine loads. The combustion is improved, and the fuel consumption is significantly reduced, avoiding the increase in fuel pump energy consumption caused by the 50 MPa fuel injection system, but the delayed injection increases particulate matter emissions.
Technical Paper

Energy Transformation Propelled Evolution of Automotive Carbon Emissions

2023-10-30
2023-01-7006
The Chinese government and industries have proposed strategic plans and policies for automotive renewable-energy transformation in response to China’s commitments to peak the national carbon emissions before 2030 and to achieve carbon neutrality by 2060. We thus analyze the evolution of carbon emissions from the vehicle fleet in China with our data-driven models based on these plans. Our results indicate that the vehicle life-cycle carbon emissions are appreciable, accounting for 8.9% of the national total and 11.3% of energy combustion in 2020. Commercial vehicles are the primary source of automotive carbon emissions, accounting for about 60% of the vehicle energy cycle. Among these, heavy-duty trucks are the most important, producing 38.99% of the total carbon emissions in the vehicle operation stage in 2020 and 52.18% in 2035.
Technical Paper

Research on Cold Start Strategy of Vehicle Multi-Stack Fuel Cell System

2023-10-30
2023-01-7036
To study the cold start of muti-stack fuel cell system (MFCS), a novel thermal management subsystem structure and corresponding cold start strategies are proposed. Firstly, leveraging the distinctive configuration of the MFCS that can be sequentially initiated, we augmented the existing thermal management subsystem with the incorporation of two additional collection valves and two bypass diverter valves, which affords an increased degree of flexibility in the formulation of cold-start strategies. Secondly, we innovatively propose a hierarchical auxiliary heating cold start strategy and an average auxiliary heating cold start tailored for MFCS consisting of power levels of 20 kW, 70 kW, and 120 kW. Furthermore, we have developed a controller to address temperature control challenges during the start-up process.
Technical Paper

Load Spectrum Extraction of Double-Wishbone Independent Suspension Bracket Based on Virtual Iteration

2023-04-11
2023-01-0774
The displacement of the shaft head fails to be accurately measured while the three-axle heavy-duty truck is driving on the reinforced pavement. In order to obtain accurate fatigue load spectrum of the suspension bracket, the acceleration signals of the shaft heads of the suspension obtained by the reinforced pavement test measurement are virtually iterated as responses. A more accurate model of the rigid-flexible coupled multi-body dynamics (MBD) of the whole vehicle is established by introducing a flexible frame based on the comprehensive modal theory. Furthermore, the vertical displacements of the shaft heads are obtained by the reverse solution of the virtual iterative method with well-pleasing precision. The accuracy of the virtual iteration is verified by comparing the simulation results with the vertical acceleration of the shaft head under the reinforced pavement in the time domain and damage domain.
Technical Paper

MPC-Based Downhill Coasting-Speed Control Method for Motor-Driven Vehicles

2023-04-11
2023-01-0544
To improve the maneuverability and energy consumption of an electrical vehicle, a two-level speed control method based on model predictive control (MPC) is proposed for accurate control of the vehicle during downhill coasting. The targeted acceleration is planned using the anti-interference speed filter and MPC algorithm in the upper-level controller and executed using the integrated algorithm with the inverse vehicle dynamics and proportional-integral-derivative control model (PID) in the lower-level controller, improving the algorithm’s anti-interference performance and road adaptability. Simulations and vehicle road tests showed that the proposed method could realize accurate real-time speed control of the vehicle during downhill coasting. It can also achieve a smaller derivation between the actual and targeted speeds, as well as more stable speeds when the road resistance changes abruptly, compared with the conventional PID method.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

An Interactive Car-Following Model (ICFM) for the Harmony-With-Traffic Evaluation of Autonomous Vehicles

2023-04-11
2023-01-0822
Harmony-with-traffic refers to the ability of autonomous vehicles to maximize the driving benefits such as comfort, efficiency, and energy consumption of themselves and the surrounding traffic during interactive driving under traffic rules. In the test of harmony-with-traffic, one or more background vehicles that can respond to the driving behavior of the vehicle under test are required. For this purpose, the functional requirements of car-following model for harmony-with-traffic evaluation are analyzed from the dimensions of test conditions, constraints, steady state and dynamic response. Based on them, an interactive car-following model (ICFM) is developed. In this model, the concept of equivalent distance is proposed to transfer lateral influence to longitudinal. The calculation methods of expected speed are designed according to the different car-following modes divided by interaction object, reaction distance and equivalent distance.
Technical Paper

A Novel Speed Control Strategy for Electric Vehicles with Optimal Energy Consumption under Multiple Constraints

2023-04-11
2023-01-0697
Autonomous driving related technologies have become a hot topic in academia and industry. Planning control is one of the core technologies of autonomous driving, which is conducive to vehicles safe and efficient driving. This paper proposes a novel optimal speed control algorithm, which considers the power system's energy consumption, the speed limit on the road, and the safe distance of the vehicle in front. An optimal speed control model of “From battery to wheel” energy consumption is established by constructing a performance index function based on the best-fitting formula of motor power, motor speed and torque. Based on the optimal control principle, the fourth-order ordinary differential equation of the speed control model is established, based on the indirect adjoining approach, the speed control model under the restriction of the road speed limit and safe distance of the preceding vehicle is derived and the analytical expression is obtained.
Technical Paper

A method of Speed Prediction Based on Markov Chain Theory Using Actual Driving Cycle

2022-12-22
2022-01-7081
As a prerequisite for energy management of hybrid vehicles, the results of speed prediction can optimize the performance of vehicles and improve fuel efficiency. Energy management strategies are usually developed based on standard driving cycles, which are too generalized to show the variability of driving conditions in different time and locations. Therefore, this paper constructs a representative driving cycle based on driving data of the corresponding time and location, used as historical information for prediction. We propose a method to construct the driving cycle based on Markov chain theory before constructing the prediction model. In this paper, multiple prediction methods are compared with traditional parametric methods. The difference in prediction accuracy between multiple prediction methods under the single time scale and multiple time scale were compared, which further verified the advantages of the speed prediction method based on Markov chain theory.
Technical Paper

A Study on Optimization Design of Hydrogen Supply Integrated Subsystem for Multi-Stack Fuel Cells

2022-10-28
2022-01-7039
The hydrogen supply integrated subsystem is an important part of the proton exchange membrane fuel cell system. In the multi-stack fuel cell system, the optimal design and integration of the hydrogen supply subsystem have great influence on the whole system structure. In this paper, a fuel cell hydrogen integration subsystem with two hydrogen cycle structures is established based on an optimized split-stack approach. Firstly, the matching of hydrogen subsystem is carried out on the basis of multi-stack fuel cell optimization. Then, the structure of the gas buffering and distribution device and the gas circulation device is optimized considering the gas circulation and the diversity of the equipment, and two solutions are proposed: the separate circulation structure (Structure I) and the common circulation structure (Structure II). Finally, the multi-stack fuel cell system is built by MATLAB/Simulink software and simulated under the condition of step and C-WTVC.
Technical Paper

Simulation of the Internal Flow and Cavitation of Hydrous Ethanol-Gasoline Fuels in a Multi-Hole Direct Injector

2022-03-29
2022-01-0501
Hydrous ethanol not only has the advantages of high-octane number and valuable oxygen content, but also reduce the energy consumption in the production process. However, little literature investigated the internal flow and cavitation of hydrous ethanol-gasoline fuels in the multi-hole direct injector. In this simulation, a two-phase fuel flow model in injector is established based on the multi-fluid model of Euler-Euler method, and the accuracy of model is verified. On the basis of this model, the flow of different hydrous ethanol-gasoline blends is calculated under different injection conditions, and the cavitation, flow rate, and velocity at the outlet of the nozzle are predicted. Meanwhile, the influence of temperature and back pressure on the flow is also analyzed. The results show that the use of hydrous ethanol reduces the flow rate, compared with the velocity of E0, that of E10w, E20w, E50w, E85w, and E100w decreases by 10%, 12.9%, 17.6%, 20%, and 23.5%, respectively.
Technical Paper

Efficient Trajectory Planning for Tractor-Trailer Vehicles with an Incremental Optimization Solving Algorithm

2022-03-29
2022-01-0138
A tractor-trailer vehicle (TTV) consists of an actuated tractor attached with several full trailers. Because of its nonlinear and noncompleted constraints, it is a challenging task to avoid collisions for path planner. In this paper, we propose an efficient method to plan an optimal trajectory for TTV to reach the destination without any collision. To deal with the complicated constraints, the trajectory planning problem is formulated as an optimal control problem uniformly, which can be solved by the interior point method. A novel incremental optimization solving algorithm (IOSA) is proposed to accelerate the optimization process, which makes the number of trailers and the size of obstacles increase asynchronously. Simulation experiments are carried out in two scenarios with static obstacles. Compared with other methods, the results show that the planning method with IOSA outperforms in the efficiency.
Technical Paper

Lane Marking Detection for Highway Scenes based on Solid-state LiDARs

2021-12-15
2021-01-7008
Lane marking detection plays a crucial role in Autonomous Driving Systems or Advanced Driving Assistance System. Vision based lane marking detection technology has been well discussed and put into practical application. LiDAR is more stable for challenging environment compared to cameras, and with the development of LiDAR technology, price and lifetime are no longer an issue. We propose a lane marking detection algorithm based on solid-state LiDARs. First a series of data pre-processing operations were done for the solid-state LiDARs with small field of view, and the needed ground points are extracted by the RANSAC method. Then, based on the OTSU method, we propose an approach for extracting lane marking points using intensity information.
Journal Article

A Novel Asynchronous UWB Positioning System for Autonomous Trucks in an Automated Container Terminal

2020-04-14
2020-01-1026
As a critical technology for autonomous vehicles, high precise positioning is essential for automated container terminals to implement intelligent dispatching and to improve container transport efficiency. Because of the unstable performance of global positioning system (GPS) in some circumstances, an ultra wide band (UWB) positioning system is developed for autonomous trucks in an automated container terminal. In this paper, an asynchronous structure is adopted in the system, and a three-dimensional (3D) localization method is proposed. Other than a traditional UWB positioning system with a server, in this asynchronous system, positions are calculated in the vehicle. Therefore, propagation delays from the server to vehicles are eliminated, and the real-time performance can be significantly improved. Traditional 3D localization methods based on time difference of arrival (TDOA) are mostly invalid with anchors in the same plane.
Journal Article

The Study on Fatigue Bench Test and Durability Evaluation of a Light Truck Cab

2020-04-14
2020-01-0760
The cab is an essential part of a light truck, and its fatigue durability performance plays an important role in the design and development stage. Accelerated fatigue bench test has been widely applied to product development of carmakers for its low cost and short development cycle. However, in reality, interference exists generally in torsional conditions for the light truck cab when tested on the 4-post vehicle road simulation system. To solve this problem and minimize the lateral force applied on the hydraulic cylinders, the direction and size combinations of displacement release about front and rear suspensions were discussed based on multi-body dynamics simulation and fixture design theory in this paper. Through comparative study, the optimum design and layout scheme of fixtures was determined to conduct the next test procedure. The weak positions of the light truck cab were firstly predicted by utilizing finite element method (FEM) and fatigue analysis theory.
Technical Paper

Model-Based Pitch Control for Distributed Drive Electric Vehicle

2019-04-02
2019-01-0451
On the dual-motor electric vehicle, which is driven by two electric motors mounted on the front and rear axles respectively, longitudinal dynamic control and electro-dynamic braking can be achieved by controlling the torque of front and rear axle motors respectively. Suspension displacement is related to the wheel torque, thus the pitch of vehicle body can be influenced by changing the torque distribution ratio. The pitch of the body has a great influence on the vehicle comfort, which occurs mainly during acceleration and braking progress. Traditionally active suspension is adopted to control the pitch of body. Instead, in this paper an ideal torque distribution strategy is developed to limit the pitch during acceleration and braking progress. This paper first explores the relationship between the torque distribution and the body pitch through the real vehicle test, which reveals the feasibility of the vehicle comfort promotion by optimizing the torque distribution coefficient.
Technical Paper

Research and Development of an Electromagnetic Actuated Active Suspension

2019-04-02
2019-01-0858
Active suspension could achieve good ride comfort and road holding performance. Traditional active suspension which utilizes air actuator or hydraulic actuator features relatively slow response or high energy consumption. Utilizing Permanent Magnet Synchronous Motor (PMSM) as actuator, the Electromagnetic Actuated Active Suspension (EAAS) benefits quick response and energy harvesting from vibration at the same time. Benchmarked with luxury cars available on the market, design parameters and design boundary are determined. A mechanism includes push bar and bell crank is designed to transfer the rotary motion of PMSM into linear motion of suspension, or verse vice. A prototype of EAAS is built in compromise of limited budget and a test bench is designed and set up. Different from conventional quarter car model, the model of EAAS in this paper is investigated and the total inertial of PMSM, gearbox and suspension control arms are calculated and simplified as an equivalent mass.
Technical Paper

Analysis of the Statistical Energy Consumption and Its Application to an Economic Evaluation of Plug-In Hybrid Electric Vehicles

2019-04-02
2019-01-0933
The energy consumption depends not only on the structures of vehicles but also on their operating conditions. For vehicles with the same structure, the operating conditions will vary from driver to driver. In this paper, considering the difference of operating conditions, the concept of statistical energy consumption is proposed to reveal the statistical law of actual vehicle energy consumption. In this paper, a plug-in hybrid electric vehicle (PHEV) is taken as the research object. Based on the distribution law of three vehicle use factors, i.e. vehicle mass, daily driving distance and driving aggression, Monte Carlo method is used to simulate and calculate the statistical energy consumption and statistical comprehensive energy consumption. Then, the energy consumption values that only considered the daily driving distance is calculated.
Journal Article

The Effect of Fixture on the Testing Accuracy in the Spindle-Coupled Road Simulation Test

2018-04-03
2018-01-0130
The action of load on the component is crucial to evaluate the performance of durability. Another factor that affects fatigue life is the boundary conditions of the test specimen being tested by introducing unrealistic loads on the component of interest. The physical test is widely conducted in the laboratory. The fixture provides additional constraints on the test specimen as well as reaction forces to balance the test system [1]. The characteristics of the fixture involved in the test is important to analyze and assess the test results [2]. The impact of the reaction force of the fixture on the spindle-coupled axle road simulation test is presented in this article. A simplified 7-DoF (degrees of freedom) model is introduced to demonstrate the dynamic behavior of the vehicle. The influence on the internal load by the fixture has been analyzed. Followed by a more detailed MBS (multibodysystem) model to give a thorough understanding of the phenomenon.
X