Refine Your Search

Topic

Search Results

Technical Paper

Analysis of Low-Frequency Brake Noise for Drum Brakes on Semi-Trailers

2024-04-09
2024-01-2895
A road test on semi-trailers is carried out, and accelerations of some characteristic points on the braking system,axles,and truck body is measured,also brake pressure and noise around the support frame is acquired.The measured data was analyzed to determine the causes of the brake noise, and the mechanism of the noise of the drum brake of semi-trailers during low-speed braking was investigated. The following conclusions are obtained: (1) Brake noise of the drum brake of the semi-trailer at low-frequency is generated from vibrations of the brake shoes, axle, and body, and the vibration frequency is close to 2nd natural frequency of the axle. (2) Brake noise is generated from stick-slip motion between the brake shoes and the brake drum, where the relative motion between the brake drum and the brake shoes is changed alternately with sliding and sticking, resulting in sudden changes in acceleration and shock vibration.
Technical Paper

Parameter Identification of Constitute Model of Glass Fiber Reinforced Polypropylene under Adiabatic Temperature Rise Loads

2024-04-09
2024-01-2355
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective.
Technical Paper

Optical Investigation of Lean Combustion Characteristics of Non-Uniform Distributed Orifice Passive Pre-Chamber on a High Compression Ratio GDI Engine

2024-04-09
2024-01-2101
The passive pre-chamber (PC) is valued for its jet ignition (JI) and is suitable for wide use in the field of gasoline direct injection (GDI) for small passenger cars, which can improve the performance of lean combustion. However, the intake, exhaust, and ignition combustion stability of the engine at low speed is a shortcoming that has not been overcome. Changing the structural design to increase the fluidity of the main chamber (MC) and pre-chamber (PC) may reduce jet ignition performance, affecting engine dynamics. This investigation is based on non-uniformly nozzles distributed passive pre-chamber, which is adjusted according to the working medium exchange between PC and MC. The advantages and disadvantages of the ignition mode of PC and SI in the target engine speed range are compared through optical experiments on a small single-cylinder GDI engine.
Technical Paper

Optimization Methods to Enhance Performance of a Powertrain Mounting System at Key on and Key off

2024-04-09
2024-01-2389
To enhance the transient vibration performance of the vehicle at key on and key off, a method for optimizing mount parameters of a powertrain mounting system (PMS) is proposed. Uncertainties of mount parameters widely exist in a PMS, so a method for optimizing mount parameters of a PMS, which treats the mount parameters of a PMS as uncertain, is also proposed in this paper. Firstly, a 13 degrees of freedom (DOFs) model including car body with 3 DOFs, a PMS with 6 DOFs and unsprung mass with 4 DOFs is established, and the acceleration of the active side of mounts is calculated. An experiment is carried out to measure the accelerations located at active and passive sides of each mount and the accelerations of seat track. A comparison is made between the measured and estimated accelerations, and the proposed model is validated. Two optimization methods for the PMS are proposed based on the developed 13 DOFs model.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Matching and Optimization Design of Electric Drive Assembly Mounting System of Electric Vehicle

2023-10-30
2023-01-7002
The design method for the powertrain mounting system in internal combustion engine vehicles is well-established. Electric vehicles experience higher vibration frequencies and more significant transient responses when accelerating or braking than fuel vehicles due to their high speed and fast response. Therefore, the design of the electric drive assembly mounting system requires further development. The modeling of electric drive assembly mounting systems often neglects the mounting bracket’s influence, which significantly affects the center of mass and rotational inertia of the electric drive assembly. This paper examines the effect of the mounting bracket in the electric drive assembly mounting system. It establishes a mathematical model with six degrees of freedom for the mounting system, considering the mounting bracket. By comparing the natural characteristics and the transient response, it is discussed whether the mass of the mounting bracket greatly influences the system.
Technical Paper

Transient Temperature Field Prediction of PMSM Based on Electromagnetic-Heat-Flow Multi-Physics Coupling and Data-Driven Fusion Modeling

2023-10-30
2023-01-7031
With the increase of motor speed and the deterioration of operating environment, it is more difficult to predict the transient temperature field (TTF). Meanwhile, it is difficult to obtain the temperature test dataset of key nodes under various complete road conditions, so the cost of bench test or real vehicle test is high. Therefore, it is of great significance to establish a high fidelity, lightweight temperature prediction model which can be applied to real vehicle thermal management for ensuring the safe and stable operation of motor. In this paper, a physical model simulating electromagnetic-heat-flow multi-physical coupling of permanent magnet synchronous motor (PMSM) in electric drive gearbox (EDG) is established, and the correctness of the model is verified by the actual EDG bench test.
Technical Paper

Analysis and Experimental Research on Whine Noise of the Engine Balance Shaft Gear System

2023-05-08
2023-01-1152
An Inline 4-cylinder engine is equipped with second-order balance shafts. When the engine is running under no-load acceleration conditions, the gear system of the balance shaft generated whine noise. In this paper, an analysis and experiment method for reducing the whine noise is presented. First, a flexible multi-body dynamic model of the engine is established, which includes shaft and casing deformation, micro-modification of the gears. Taking the measured cylinder pressure as input, the load on each gear of balance shaft gear system is calculated. In addition, the influence of tooth surface micro-modification on the meshed noise was analyzed. The results show that the dynamic meshing force between the crank gear and the shim gear is large under the original tooth surface micro-modification parameters, which is the main reason of the whine noise.
Technical Paper

Parameters Identification of Mooney-Rivlin Model for Rubber Mount Based on Surrogate Model

2023-05-08
2023-01-1150
As an important vibration damping element in automobile, the rubber mount can effectively reduce the vibration transmitted from the engine to the frame. In this study, a method of parameters identification of Mooney-Rivlin model by using surrogate model was proposed to more accurately describe the mechanical behavior of mount. Firstly, taking the rubber mount as the research object, the stiffness measurement was carried out. And then the calculation model of the rubber mount was established with Mooney-Rivlin model. Latin hypercube sampling was used to obtain the force and displacement calculation data in different directions. Then, the parameters of the Mooney-Rivlin model were taken as the design variables. And the error of the measured force-displacement curve and the calculated force-displacement curve was taken as the system response. Two surrogate models, the response surface model and the back-propagation neural network, were established.
Technical Paper

Material Parameter Identification Method for Rubber Mount Constitutive Equation

2023-05-08
2023-01-1154
As an important vibration damping element in automobile industries, the vibration transmitted from the engine to the frame can be reduced effectively because of rubber mount. The influence of preload on the static characteristics of rubber mount and the constitutive parameters identification of Mooney-Rivlin model under preload were studied. Firstly, a test rig for stiffness measurement of rubber mount under preload was designed and the influence of preload on the force versus displacement of mount was studied. Then, the model for estimating force versus displacement of rubber mount was established. The response surface model for parameters identification was established. And the identification method for estimating parameters of Mooney-Rivlin model of rubber mount was proposed with the crow search algorithm. Taking the rubber mount as the research object and taking the parameters of Mooney-Rivlin model as the variables.
Technical Paper

Study on Local Stress Variable Strength Design Effect of B-Pillar Structure

2023-04-11
2023-01-0082
In this paper, the principles, advantages and disadvantages of the main technology of variable strength design of automobile B-pillar Based on the finite element simulation technology, the local stress variable strength design effect of Automobile B-pillar structure is simulated, compared and evaluated. The simulation results show that with the same mechanical properties, the overall lightweight degree of B-pillar structure with variable strength design can be reduced by about 8.9%. With the expansion of the strengthening area of variable strength design of parts, the degree of lightweight of parts can be further improved. It can be seen that the local stress variable strength design method provides a new technical option for the lightweight design of automobile parts.
Technical Paper

Modeling and Study on Static Performance of the Double-Top-Foil Air Foil Journal Bearing for Air Compressors in Fuel Cell Vehicles

2023-04-11
2023-01-0870
Air foil bearings are gradually applied in air compressors in fuel cell vehicles for the advantages of high speed, oil-free and non-contact. Advanced air foil bearings with different structures are used to improve the performance of air compressor. Accurate modeling of the complex structures in air foil bearings has become a research hotspot in recent years. This paper presents a theoretical model for a double-top-foil air foil journal bearing (DAFJB) for centrifugal air compressors used in fuel cell vehicles. The foil structure is modeled by finite element method (FEM) using shell elements. Coulomb law and penalty function method are applied to model the tangential and normal behavior of the contact areas. The local contact between the middle top foil and the bump foil, the bump foil and the bearing sleeve are modeled using node-to-segment contact method. The large-area contact behavior between two layers of top foils is modeled by simplified surface-to-surface contact scheme.
Technical Paper

Multi-objective Combination Optimization of Automobile Subframe Dynamic Stiffness

2023-04-11
2023-01-0005
Subframe is an important part of automobile chassis, which is connected with body, suspension control arm, powertrain mount, etc. The dynamic stiffness value of the connection point is an important performance index of the subframe, which affects the vibration of the vehicle body. This paper introduces the basic concept and related theory of dynamic stiffness, derives the theoretical formula of dynamic stiffness, and analyzes the frequency response of the key points of the subframe. In view of the fact that the dynamic stiffness of the subframe of a certain vehicle model is not up to the standard at some connection points, the dynamic stiffness CAE simulation analysis is carried out to determine the frequency range of insufficient dynamic stiffness and the connection points that need to be optimized.
Technical Paper

Research on Thermal Recession Compensation Method of Disc Brakes

2023-04-11
2023-01-0668
If a car is braked frequently or at high speed, the thermal decay of brake system performance appears, which reduces the braking performance of the car. To compensate brake moment reduction during braking at thermal decay of brake system, a compensation strategy of brake moment is designed by using “feedforward +PID feedback” to pressure at wheel braking cylinder. The trigger and exit conditions of the strategy for the wheel cylinder pressure are proposed based on the threshold. A vehicle model consisting braking system is established if a vehicle runs at straight line, and the braking distance and braking acceleration are estimated, the results shown that the thermal decay compensation control strategy proposed in this paper can reduce the braking distance and braking time.
Technical Paper

Modeling of Gas Charging and Discharging for Airbag Suspension System and Control of Height Adjustment

2023-04-11
2023-01-0660
Taking a closed airbag suspension system as studying objects, the nonlinear dynamic model of the reservoir, compressor, solenoid valve, pipeline and air spring is established. The compressor exhaust volume, solenoid valve flow rate and air spring charging and discharging rate are calculated and compared with experiment to validate the model. Taking pressure difference and height adjustment rate under different working conditions of an airbag suspension as control measures, a control strategy is developed based on the established nonlinear dynamic model. The result indicates that when the vehicle is in curb weight, design weight and GVW (gross vehicle weight), the working time of the compressor can be reduced by 13.6%, 15.1% and 46.5%, respectively, compared with the conventional mode, during a height adjustment cycle. Then a state observer is proposed to estimate the steady-height for reducing the disturbance of measured height from road excitation.
Technical Paper

Design and Structural Parameters Analysis of the Centrifugal Compressor for Automotive Fuel Cell System Based on CFD Method

2023-04-11
2023-01-0499
Electric centrifugal air compressor is one of the most important auxiliary components for the fuel cell engine, which has great impacts on the system efficiency, cost and compactness. However, the centrifugal compressor works at an ultra-high speed for a long time, which poses a great challenge to the lives of motor, bearing and seal. Therefore, reducing the rotating speed of the impeller and maintaining high pressure ratio and high efficiency are important issues for aerodynamic design of the compressor. In this paper, a centrifugal compressor rotor for a 100kW fuel cell system is designed. Aiming at reducing the rotating speed, the influences of three key structural parameters including inlet blade angle, outlet blade angle and blade outlet radius on performance are investigated. The aerodynamic performance of the compressor is predicted using the Reynolds-averaged Navier-Stokes (RANS) equations with computational fluid dynamic (CFD) tools.
Technical Paper

Optimization Design and Performance Verification of the Second Generation Single Motor Plug-in Hybrid System (EDU) of SAIC Motor Vehicle Company

2023-04-11
2023-01-0446
SEAT Department of SAIC Motor Vehicle Company starts innovatively applying the single motor and P2.5 configuration scheme from EDU G2(Electric Drive Unit Generation 2), which consists of six engine gears and four motor gears. EDU G2 is very compact and adaptable through the coupling design. Gear coupling make the engine and motor coordination limited, so as to the high efficiency zone of the engine and the high efficiency zone of the motor cannot match in some working conditions, which affect the performance of the vehicle. Therefore, SEAT developed the second generation of single-motor plug-in hybrid system EDU G2 Plus EDU G2(Electric Drive Unit Generation 2 Plus), which realized the decoupling design of 5 engine gears and 2 motor gears, so that the power output of engine and motor is freely. With excellent power and economic performance, the vehicle has been well received by customers.
Technical Paper

Simulation Based Visual Study of Particulate Deposition Characteristics in Millimeter-Scale Channels of a Diesel Particulate Filter

2023-04-11
2023-01-0387
The diesel particulate filter (DPF) is an effective device for reducing particulate emissions from diesel engines, while its durability and reliability after long-term use are causes for concern. Usually, particulates are considered to be uniformly deposited in DPF channels to form a cake or end plug, however, recent studies have found that a “middle channel deposit” phenomenon of particulates can form a bridge near the middle of the DPF channel. This phenomenon has serious adverse effects on the durability and reliability of the DPF, including abnormally increased pressure drop and frequent regeneration. Since the width of the DPF channel is only about 1-2 millimeters, conventional methods cannot observe the particulate deposition process inside the DPF.
Technical Paper

Experimental Study on Effect of State of Charge on Thermal Runaway Characteristics of Commercial Large-Format NCM811 Lithium-Ion Battery

2023-04-11
2023-01-0136
The application of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode-based lithium-ion batteries (LIBs) has alleviated electric vehicle range anxiety. However, the subsequent thermal safety issues limit their market acceptance. A detailed analysis of the failure evolution process for large-format LIBs is necessary to address the thermal safety issue. In this study, prismatic cells with nominal capacities of 144Ah and 125Ah are used to investigate the thermal runaway (TR) characteristics triggered by lateral overheating. Additionally, TR characteristics under two states of charge (SoCs) (100% and 5%) are discussed. Two cells with 100% SoC exhibit similar characteristics, including high failure temperature, high inhomogeneity of temperature distribution, multi-points jet fire, and significant mass loss. Two cells with 5% SoC demonstrate only a slight rupture of the safety valve and the emission of white smoke.
Journal Article

Physical-Neural Network Hybrid Modeling Method for Dynamic Characteristics of Air Springs with Auxiliary Chambers

2023-04-11
2023-01-0122
Air springs with auxiliary chambers (ASAC) are widely used in automotive suspension systems. The introducing of the auxiliary chamber and the connecting flow passage makes the system more complex, especially in which case an additional resonance peak caused by the air inertia in a connecting pipe appears. To characterize the nonlinear dynamic characteristics, this paper proposes a novel physical-neural network hybrid modeling method for ASACs. Firstly, experiments are carried out to measure the dynamic characteristics of ASACs. Then, based on the thermodynamic principle, a nonlinear dynamic characteristic model for the ASAC is developed and a linearized process is performed to obtain a linearized physical model. Due to the amplitude dependence and frequency dependence in the dynamic characteristics of ASACs, the physical model cannot accurately characterize these nonlinearities.
X