Refine Your Search

Topic

Author

Search Results

Technical Paper

Inverse Analysis of Road Contact Force and Contact Location Using Machine Learning with Measured Strain Data

2024-04-09
2024-01-2267
To adapt to Battery Electric Vehicle (BEV) integration, the significance of protective designs for battery packs against ground impact caused by road debris is very high, and there is also a keen interest in the feasibility assessment technique using Computer-Aided Engineering (CAE) tools for prototype-free evaluations. However, the challenge lies in obtaining real-world empirical data to verify the accuracy of the predictive CAE model. Collecting real-world data using actual battery pack can be time-consuming, costly, and accurately ascertaining the precise direction, magnitude, and location of the force applied from the road to the battery pack poses a challenging task. Therefore, in this study, we developed a methodology using machine learning, specifically Gaussian process regression (GPR), to perform inverse analysis of the direction, magnitude, and location of vehicle-road contact forces during rough road conditions.
Technical Paper

Development of New 2.0-Liter Plug-in Hybrid System for the Toyota Prius

2024-04-09
2024-01-2169
Reducing vehicle CO2 emissions is an important measure to help address global warming. To reduce CO2 emissions on a global basis, Toyota Motor Corporation is taking a multi-pathway approach that involves the introduction of the optimal powertrains according to the circumstances of each region, including hybrid electric (HEVs) and plug-in hybrid electric vehicles (PHEVs), as well as battery electric vehicles (BEVs). This report describes the development of a new PHEV system for the Toyota Prius. This system features a traction battery pack structure, transaxle, and power control unit (PCU) with boost converter, which were newly developed based on the 2.0-liter HEV system. As a result, the battery capacity was increased by 1.5 times compared to the previous model with almost the same battery pack size. Transmission efficiency was also improved, extending the distance that the Prius can be driven as an EV by 70%.
Technical Paper

Structure and properties of a nano-carbon composite surface coating for roll-to-roll manufacturing of titanium fuel cell bipolar plates

2023-09-29
2023-32-0138
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks.
Technical Paper

Development of e-AWD Hybrid System with Turbo Engine for SUVs

2023-04-11
2023-01-0470
This paper describes the development of a new e-AWD hybrid system developed for SUVs. This hybrid system consists of a high-torque 2.4-liter turbocharged engine and a front unit that contains a 6-speed automatic transmission, an electric motor, and an inverter. It also includes a rear eAxle unit that contains a water-cooled high-power motor, an inverter, and a reduction gear, as well as a bipolar nickel-metal hydride battery. By combining a turbo engine that can output high torque across a wide range of engine rpm with two electric motors (front and rear), this system achieves both smooth acceleration with a torquey driving feeling and rapid response when the accelerator pedal is pressed. In addition, new AWD control using the water-cooled rear motor realized more stable cornering performance than the previous e-AWD system.
Technical Paper

Development of Charging System for bZ4X

2023-04-11
2023-01-0483
In 2022, Toyota launched new battery electric vehicle (BEV), the Toyota bZ4X. Unlike gasoline-powered vehicles, BEVs require charging. Users want increased range and shorter charging times. bZ4X's charging system increased range and shortened AC/DC charging time compared to the Lexus UX300e launched in 2020. A new unit called Electricity Supply Unit (ESU) was developed that integrated a DCDC converter, on-board charger, DC relays, and a branch box for power distribution function into a single unit. The design moved the branch box out of the battery pack to make room for the battery capacity, and it integrated the power conversion function into a single unit, making it more compact than if each unit were mounted separately. A 7 kW or 11 kW on-board charger is included with the vehicle. The 7 kW on-board charger is inside ESU; the 11 kW charger is external to the ESU.
Technical Paper

Development of Powertrain System and Battery for BEV

2023-04-11
2023-01-0518
Toyota has launched a new BEV which incorporates our newest evolutions in BEV powertrain systems and vehicle platform innovations. The new BEV uses newly developed large format battery cells, which, in addition to achieving our key performance and safety targets, also incorporates new technologies resulting in improved battery energy density and a reduction in battery deterioration. For the BEV battery cooling, to enhance safety, the cooling plate and the battery cells are separated by a chamber structure. The battery pack also incorporates a newly developed high resistance coolant with low conductivity. The new BEV improves system efficiency by leveraging some technologies that were originally developed for HEV and developing new systems. For example, radiant heating and a newly developed heat pump system improve EV driving range. This presentation will introduce our new battery technologies and discuss our new BEV system.
Technical Paper

Development of the New 2.0L Hybrid System for Prius

2023-04-11
2023-01-0474
It is necessary for us to reduce CO2 emissions in order to hold down global warming which is advancing year by year. Toyota Motor Corporation believes that not only the introduction of BEVs but also the sale of the hybrid vehicles must spread in order to achieve the necessary CO2 reduction. Therefore, we planned to improve the attractiveness of future hybrid vehicles. Prius has always made full use of hybrid technologies and leading to significant CO2 reduction. Toyota Motor Corporation has developed a 2.0L hybrid system for the new Prius. We built the system which could achieve a comfortable drive along following the customer’s intention while improving the fuel economy more than a conventional system. The engine improves on both output and thermal efficiency. The transaxle decreases mechanical loss by downsizing the differential, and adoption of low viscosity oil.
Technical Paper

Development of In Mold Coating Clear Coat Paint for Carbon Fiber Sheet Molding Compound Roof

2022-03-29
2022-01-0345
Carbon Fiber Reinforced Plastic (CFRP) is used for various products in the aerospace and sports industries due to its superior specific tensile strength and specific rigidity. With increasing attention to Carbon Neutrality (CN) in the world, vehicle electrification and lightweighting are expanding. As a result, the application of CFRP to luxury cars, electric cars, and sports cars, is increasing. For example, CFRP is used on Lexus LC and RC-F, and Toyota 86 GRMN. However, there are two technical concerns. The first is its durability, which caused by CFRP resin characteristic. The second is poor appearance, which is caused by CFRP surface pinholes. In order to secure good durability and surface appearance, CFRP must be pre-treated before painting (putty applied as a filler for plastic surface coverage, followed by surface sanding) and needs multiple painting steps. Current painted CFRP is not suitable for mass production due to this long and complicated process.
Technical Paper

Development of Safety Performance for FC Stack in the New Toyota FCEV

2022-03-29
2022-01-0686
The new Toyota Mirai hydrogen fuel cell electric vehicle (FCEV) was launched in December 2020. Achieving a low-cost, high-performance FC stack is an important objective in FCEV development. At the same time, it is also necessary to ensure vehicle safety. This paper presents an overview of the safety requirements for onboard FC stacks. It also describes the simulation and evaluation methods for the following matters related to the FC stack. i) Impact force resistance: The FC stack was designed to prevent cell layer slippage due to impact. Constraint force between the cell layers is provided by the frictional force between the cells and an external constraint. A simulation of the behavior of the cell layers under impact force was developed. The impact force resistance was confirmed by an impact loading test. ii) Hydrogen safety: The FC stack was designed so that permeated hydrogen is ventilated and the hydrogen concentration is kept below the standard.
Technical Paper

Development of High-Pressure Hydrogen Storage System for New FCV

2021-04-06
2021-01-0741
This paper describes the high-pressure hydrogen storage system developed for new FCV. With the aim of further popularizing FCVs, this development succeeded in improving the performance of the system and reducing costs. This new storage system consists of multiple tanks of different sizes, which were optimized to store the necessary amount of hydrogen without sacrificing the interior space of the vehicle. The new tanks achieved one of the highest volume efficiencies in the world by adopting high-strength carbon fiber, developed in conjunction with the carbon fiber manufacturer, and by optimizing the layered construction design which allowed the amount of carbon fiber to be reduced. To increase the amount of available hydrogen, the longer high pressure tanks were mounted under the vehicle floor unlike the previous model. This was accomplished by the following two measures: First, individual design and manufacturing measures for the tanks were adopted.
Technical Paper

Computational Design of Cathode Coating Materials for All-Solid-State Lithium-Ion Batteries

2021-04-06
2021-01-0758
All-solid-state lithium (Li)-ion batteries have attracted significant interest for their enhanced energy density compared with conventional batteries employing an organic liquid electrolyte. However, the interfacial impedance and reaction between electrodes and the electrolyte can hinder the transport of Li-ions, thus degrading the battery performance. This paper presents a systematic screening method to identify coatings to reduce impedance and maintain interface stability during battery operation. Promising coating materials are rapidly selected by evaluating properties for ideal coating materials from computational databases containing a vast collection of Li compounds. Finally, a few candidates are discovered and their battery performances are tested. This approach is demonstrated to be an efficient way to predict and evaluate functional coatings for a high performance all-solid -state battery design.
Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
Technical Paper

Development of a New High Orientation Paint System to Achieve Outstanding Real Metallic Designs

2020-04-14
2020-01-0899
Silver metallic colors with thin and smooth aluminum flake pigments have been introduced for luxury brand OEMs. Regarding the paint formulation for these types of colors, low non-volatile(NV) and high aluminum flake pigment contents are known as technology for high metallic appearance designs. However, there are two technical concerns. First is mottling which is caused by uneven distribution of the aluminum flake pigments in paint film and second is poor film property due to high aluminum pigment concentration in paint film. Therefore, current paint systems have limitation of paint design. As a countermeasure for those two concerns, we had investigated cellulose nanofiber (CNF) dispersion liquid as both the coating binder and rheology control agent in a new type of waterborne paint system. CNF is an effective rheology control agent because it has strong hydrogen bonds with other fiber surfaces in waterborne paint.
Technical Paper

Development of Quantitative Fuel Film Distribution Measurement by LIEF Technique and Application to Gasoline Spray

2020-04-14
2020-01-1159
From the point of global and local environment, internal combustion engine is facing the need for significant improvement of exhaust emission. Especially, important is the reduction of unburned hydrocarbon (HC) from fuel film on liner under cold condition. In this study, at first, quantitative fuel film measurement technique by using Laser Induced Exciplex Fluorescence (LIEF) was developed. For the light source, 4th harmonic pulse yttrium aluminum garnet (YAG) laser (266nm) was used. For the tracer, the combination of N,N-Dimethylaniline (DMA) and naphthalene was used and quantitative concentration was decided by calibration test. With LIEF, the distribution of fuel film can be obtained by measuring the fluorescence only from the liquid phase. In order to evaluate the effect of fuel film on exhaust HC emission from engine, the film distribution was measured using quartz glass liner. For the injector, a prototype 6-hole gasoline injector was used.
Journal Article

Super High Transfer Efficiency Application for Body Coating

2020-04-14
2020-01-0901
In order to achieve the Toyota Environmental Challenge of 2050 (zero CO2 emissions), we have developed an innovative coating system that achieves more than 95% transfer efficiency. In order to reduce paint loss in the painting process, it is necessary to eliminate overdust and bounce dust. The most important point is how to spray (atomization, particle flight, adhesion) without shaping air. We have developed a “super high transfer efficiency system” that eliminates the need for shaping air. We continue to challenge the development of innovative technologies to view the paint shop as clean and eco-friendly environment.
Technical Paper

Development of Three-Way Catalyst with Advanced Coating Layer

2020-04-14
2020-01-0653
Further improvements in catalyst performance are required to help protect the atmospheric environment. However, from the viewpoint of resource availability, it is also necessary to decrease the amount of precious metals used at the active sites of the catalyst. Therefore, a high-performance three-way catalyst with an advanced coating layer has been developed to lower the amount of precious metal usage. Fuel efficiency improvement technologies such as high compression ratios and a large-volume exhaust gas recirculation (EGR) generally tend to increase the ratio of hydrocarbons (HC) to nitrogen oxides (NOx) in exhaust gas. This research focused on the palladium (Pd) loading depth in the coating layer with the aim of improving the hydrocarbon (HC) conversion activity of the catalyst.
Technical Paper

Real-time Long Horizon Model Predictive Control of a Plug-in Hybrid Vehicle Power-Split Utilizing Trip Preview

2019-12-19
2019-01-2341
Given a forecast of speed and load demands during a trip, a hybrid powertrain power-split Trajectory Optimization Problem (TOP) can be solved to optimize fuel consumption. This can be done on desktop to set performance benchmarks; however, it has been believed that the TOP could not be solved in real-time and is not a realizable controller. As such, several approximations of the TOP have been made in the interest of obtaining a real-time near-optimal controller, for example, Equivalent Consumption Minimization Strategies (ECMS) and their adaptive counterparts. These strategies decide on the power-split by, at each sampled time instant, minimizing a Horizon-0 (without predicting forward in time) composite function of fuel consumption and equivalent battery energy. The fuel economy that results from these strategies is highly sensitive to the calibration of the associated equivalence factor, and furthermore, must be chosen differently for different drive cycles.
Journal Article

Development of Multi Stage Hybrid System for New Lexus Coupe

2017-03-28
2017-01-1173
Lexus launched the new hybrid luxury coupe LC500h in 2017 to help enhance its brand image and competitiveness for the new generation of Lexus. During the development of the LC500h, major improvements were made to the hybrid system by adopting the newly-developed Multi Stage Hybrid System, which combines a multi stage shift device with the transmission from the previous hybrid system to maximize the potential of the electrically-controlled continuously variable transmission. Optimum engine and electrical component specifications were designed for the new vehicle and transmission. As a result, the LC500h achieves a 0-to-60 mph acceleration time of 4.7 seconds, with a combined fuel economy of 30.0 mpg while satisfying SULEV emissions requirements. Two controls were constructed to help resolve the issues that arose due to adding the shift device.
Journal Article

Development of a Highly Anti-Corrosive Organic-Inorganic Hybrid Paint

2016-04-05
2016-01-0540
A highly anti-corrosive organic-inorganic hybrid paint for automotive steel parts has been developed. The inorganic component included in the paint is silicon dioxide (SiO2), which has the capability to passivate zinc. By application of the paint on a trivalent chromatetreated zinc-plated steel sheet or a trivalent chromate-treated zinc-nickel-plated steel sheet, high anti-corrosion protection can be provided to steel materials. Particularly in the case of application over a zinc-nickel-plated steel sheet, 0 mm corrosion depth after a cyclic corrosion test (CCT) of 450 cycles was demonstrated.
Journal Article

Development of Paint Booth: “New Paint Mist Collection Method”

2016-04-05
2016-01-1258
1 Inside a paint booth to spray paint on vehicle bodies, bumpers, and other parts (hereinafter referred to as “works”), air whose temperature and humidity are controlled by air-conditioner is supplied by blower fans through filters. Dust-eliminated and regulated air flow is sent downward from top to bottom (hereinafter referred to as “downflow”) in the painting booth. Conventionally, paint which does not adhere to work in spraying (hereinafter referred to as “paint mist”) is collected while flowing at a high speed through a slit opening called venturi scrubber in a mixture of air and water. However, this mist collecting system using venturi scrubber requires a large space with a large amount of pressure loss while consuming substantial energy. By radically changing the mist collecting principle, we developed a new compact system with less pressure loss aiming to reduce energy consumption by 40% in a half-size booth.
X