Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Combination of Dissimilar Overlay Materials for Engine Bearing Life Extension

2024-04-09
2024-01-2066
Nowadays, Bismuth (Bi) is being applied as an overlay material for engine bearings instead of Lead (Pb) which is an environmentally harmful material. Bi overlay has already been a solid performer in some automotive engine sectors due to its superior load carrying capacity and good robustness characteristic which are necessary to maintain its longevity during the lifetime of engines. The replacement is also seen on relatively larger size engines, such as Trucks and Off-highway heavy duty applications. Basically, these applications require higher power output than passenger cars, and the expected component lifecycle becomes longer. Though Bi has similar material characteristic to traditional Pb, it becomes challenging for the material alone to satisfy these requirements. Polymer overlay is known for its superior anti-wear performance and longer lifetime due to less adhesion against a steel counterpart than metallic materials (included Bi).
Technical Paper

Development of Bearing with Multilayer Bi-Sb Overlay for Automotive Engines

2023-04-11
2023-01-0872
In recent years, the removal of lead (Pb), which is an environmentally hazardous material often used in bearings for automotive engines, has been continuously promoted. Bismuth (Bi) is attracting attention as a substitute for lead, and it is currently being used mainly for passenger cars and trucks as a lead replacement. However, lead has not been replaced for motorcycles where the bearings are exposed to high temperatures at high rotation speeds, and trucks and generators where high loading capacity, long lifetime and good corrosion resistance are required. It has been difficult to achieve both high load and corrosion resistant for a bearing overlay material. The purpose of this development is to improve the corrosion resistance and fatigue resistance of bismuth overlay by developing a bismuth- antimony alloy overlay in which antimony (Sb) is added to the bismuth matrix.
Technical Paper

A Study of Engine Bearings Friction Loss Reduction Under Hydrodynamic Lubrication Conditions

2022-03-29
2022-01-0324
The mechanical loss reduction of the bearing reduces the fuel consumption of the engine, which can help realize a sustainable society. Thus, a bearing friction reduction technique has been studied. There have been many studies related to friction-reduction techniques for mixing and boundary lubrication. However, there are few studies on hydrodynamic lubrication, and the main methods have been related to changing the low-viscosity oil and bearing size. In driving passenger cars in urban areas, the lubricant condition of the engine bearings is largely dependent on hydrodynamic lubrication. Therefore, the power loss under this operating condition cannot be ignored. In this study, the reduction of the friction loss under hydrodynamic lubrication was focused. A method for reducing the shear resistance of oil was examined and its effect was confirmed through experiments and calculations.
Technical Paper

Experimental Study of Bismuth Alloy Overlays for Automotive Engine Bearing

2021-04-06
2021-01-0685
Bismuth has been applied successfully as sliding bearing overlay material in internal combustion engines, where a good combination of sliding properties, mechanical strength and corrosion resistance can be attained. However, environmental pressures driving towards lower emission and higher fuel efficiency are set to raise firing loads above the capability of many state-of-the-art bismuth materials in the market. At the same time, in order to meet increasingly stringent environmental regulations modern engines are adapting to more efficient and economic designs which put bearing materials under ever growing pressure to provide enhanced oxidation resistance and robustness to cope with elevated engine operating temperature and tighter oil clearance.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Technical Paper

Study of Simple Detection of Gasoline Fuel Contaminants Contributing to Increase Particulate Matter Emissions

2020-04-14
2020-01-0384
The reduction of particulate emissions is one of the most important challenges facing the development of future gasoline engines. Several studies have demonstrated the impact of fuel chemical composition on the emissions of particulate matter, more particularly, the detrimental effect of high boiling point components such as heavy aromatics. Fuel contamination is likely to become a critical issue as new regulations such as Real Driving Emissions RDE involves the use of market fuel. The objective of this study is to investigate several experimental approaches to detect the presence of Diesel contamination in Gasoline which is likely to alter pollutant emissions. To achieve this, a fuel matrix composed of 12 fuels was built presenting diesel fuel in varying concentrations from 0.1 to 2% v/v. The fuel matrix was characterized using several original techniques developed in this study.
Technical Paper

Effect of High RON Fuels on Engine Thermal Efficiency and Greenhouse Gas Emissions

2019-04-02
2019-01-0629
Historically, greenhouse gas (GHG) emissions standards for vehicles have focused on tailpipe emissions. However, sound environmental policy requires a more holistic well-to-wheels (WTW) assessment that includes both production of the fuel and its use in the vehicle. The present research explores the net change in WTW GHG emissions associated with moving from regular octane (RO) to high octane (HO) gasoline. It considers both potential increases in refinery emissions from producing HO fuel and potential reductions in vehicle emissions through the use of fuel-efficient engines optimized for such fuel. Three refinery configurations of varying complexity and reforming capacity were studied. A set of simulations covering different levels of HO gasoline production were run for each refinery configuration.
Technical Paper

Development of Innovative Dynamic Torque Vectoring AWD System

2019-04-02
2019-01-0332
This paper describes the development of an innovative AWD system called Dynamic Torque Vectoring AWD for all-wheel drive (AWD) vehicles based on a front-wheel drive configuration. The Dynamic Torque Vectoring AWD system helps to achieve high levels of both dynamic performance and fuel efficiency. Significant fuel economy savings are achieved by using a new compact disconnection mechanism at the transfer and rear units, which prevents any unnecessary rotation of the propeller shaft. In addition, the system is also capable of independently distributing torque to the rear wheels by utilizing electronically controlled couplings on the left and right sides of the rear differential. This greatly enhances both on-road cornering performance and off-road driving performance.
Journal Article

Development of Fuel Cell (FC) System for New Generation FC Bus

2019-04-02
2019-01-0372
Toyota Motor Corporation has been actively pursuing the development of fuel cell vehicles (FCVs) to respond to global environmental concerns and demands for clean energy. Toyota developed the first fuel cell (FC) bus to receive vehicle type certification in Japan. Subsequently, a new FC bus has been developed, which adopts two FC systems and four high-voltage batteries to achieve the required high power performance and durability. For enhanced durability, the FC system is controlled to maximize usage of the high-voltage batteries and to reduce the number of electric potential changes of the fuel cell. To accomplish this, the voltage of the FC stack must be kept high and FC power must be kept low. The high-voltage batteries were used to actively minimize FC power during acceleration.
Technical Paper

Development of High Strength Aluminum-Zinc-Silicon Alloy Bearing with Polymer Overlay

2019-04-02
2019-01-0179
Recent automotive engine developments have made great progress in protecting the global environment and in meeting exhaust gas regulations and fuel economy regulations. As a result, engine bearings tend to be used under severe conditions such as higher specific load onto the bearings and with low viscosity of lubricating oil. Aluminum alloy bearings are widely adopted as main bearings and connecting rod bearings in gasoline and diesel engines for passenger cars, and generally Al-Sn-Si alloy bearings without an additional overlay are used. Although these Al-Sn-Si alloy bearings have good anti-seizure properties and excellent running-in-properties, their material strength under high temperature conditions is not sufficient because of the low melting point of Sn phase contained in the alloy, and they could potentially result in damage to the bearing as seizure and fatigue under these conditions. In such cases, Cu-Pb-Sn alloy bearings with lead-based overlay are usually applied.
Technical Paper

Application of Models of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions to Spark Ignition Simulation

2018-09-10
2018-01-1727
This report describes the implementation of the spark channel short circuit and blow-out submodels, which were described in the previous report, into a spark ignition model. The spark channel which is modeled by a particle series is elongated by moving individual spark particles along local gas flows. The equation of the spark channel resistance developed by Kim et al. is modified in order to describe the behavior of the current and the voltage in high flow velocity conditions and implemented into the electrical circuit model of the electrical inductive system of the spark plug. Input parameters of the circuit model are the following: initial discharge energy, inductance, internal resistance and capacitance of the spark plug, and the spark channel length obtained by the spark channel model. The instantaneous discharge current and the voltage are obtained as outputs of the circuit model.
Technical Paper

Critical Analysis of PM Index and Other Fuel Indices: Impact of Gasoline Fuel Volatility and Chemical Composition

2018-09-10
2018-01-1741
Among the challenges for the future facing the development of gasoline engines, one of the most important is the reduction of particles emissions. This study proposes a critical and objective evaluation of the influence of fuel characteristics on gasoline particles emission through the use of Fuel Particle Indices. For this, a selected fuel matrix composed of 22 fuels was built presenting different volatility and chemical composition (content in total aromatics, heavy cuts and ethanol). To represent the fuel sooting tendency, seven Fuel Particle Indices were selected based on a literature review, namely, Particulate Matter Index (PMI), Particulate Number index (PNI), Threshold Sooting index (TSI), Smoke point (SP), Oxygen Extended Sooting Index (OESI), Simplified index 1 and 2 (sPMI 1, sPMI 2). These indices were computed on the fuel matrix and compared on the basis of three main axes. First, the sensitivity to fuel variation.
Technical Paper

Effects of EGR Constituents and Fuel Composition on DISI Engine Knock: An Experimental and Modeling Study

2018-09-10
2018-01-1677
The use of exhaust gas recirculation (EGR) in spark ignition engines has been shown to have a number of beneficial effects under specific operating conditions. These include reducing pumping work under part load conditions, reducing NOx emissions and heat losses by lowering peak combustion temperatures, and by reducing the tendency for engine knock (caused by end-gas autoignition) under certain operating regimes. In this study, the effects of EGR addition on knocking combustion are investigated through a combined experimental and modeling approach. The problem is investigated by considering the effects of individual EGR constituents, such as CO2, N2, and H2O, on knock, both individually and combined, and with and without traces species, such as unburned hydrocarbons and NOx. The effects of engine compression ratio and fuel composition on the effectiveness of knock suppression with EGR addition were also investigated.
Technical Paper

The Development of a New V6 3.5L Turbocharged Gasoline Engine

2018-04-03
2018-01-0366
For the launch of the redesigned Lexus LS, a new 3.5 L V6 twin turbo engine has been developed aiming at unparalleled performance on four axes, “driving pleasure”, “power-performance”, “quietness” and “fuel economy”. To achieve outstanding power-performance and high thermal efficiency, the specifications have been optimized for high speed combustion. The maximum torque of 600 Nm, power of 310 kW (yielding specific power of 90 kW/L), and the maximum thermal efficiency of 37% have been achieved using several new technologies including a high efficiency turbocharger. A prototype vehicle equipped with this engine and Direct-Shift 10AT achieved a 0-60 mph acceleration time of 4.6 sec, with extremely good CAFE combined fuel economy of 23 mpg and power-performance aligned with V8 turbocharged offerings from competing OEM’s.
Journal Article

Effects of High Boiling Point Fuel Additives on Deposits in a Direct Injection Gasoline Engine

2017-10-08
2017-01-2299
The effects of high boiling point fuel additives on deposits were investigated in a commercial turbocharged direct injection gasoline engine. It is known that high boiling point substances have a negative effect on deposits. The distillation end points of blended fuels containing these additives may be approximately 15°C higher than the base fuel (end point: 175°C). Three additives with boiling points between 190 and 196°C were examined: 4-tert-Butyltoluene (TBT), N-Methyl Aniline (NMA), and 2-Methyl-1,5-pentanediamine (MPD). Aromatics and anilines, which may be added to gasoline to increase its octane number, might have a negative effect on deposits. TBT has a benzene ring. NMA has a benzene ring and an amino group. MPD, which has no benzene ring and two amino groups, was selected for comparison with the former two additives.
Journal Article

An Intake Valve Deposit (IVD) Engine Test Development to Investigate Deposit Build-Up Mechanism Using a Real Engine

2017-10-08
2017-01-2291
In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
Technical Paper

Development of Resin Overlay Bearing Material for Recent Automotive Engine

2017-03-28
2017-01-0460
The number of vehicles with engines using idling stop systems and hybrid systems to improve fuel consumption has recently been increasing. However, with such systems the frequent starts and stops of the engine, where the oil film between the bearings and shaft is squeezed out and direct contact between the components is more likely, can result in increased wear of the engine bearings, particularly in the main bearing. Bearings with resin overlays have been shown to display superior resistance to wear from such start-stop cycles. Moreover, cast iron shafts without quenching treatment have also been used in engines for cost reduction. Because the cast shaft has low hardness and unstable surface graphite after abrasive finishing, increase in the wear amount cannot be suppressed by conventional resin overlay in comparison with steel shaft. Therefore, the resin overlay with improved wear resistance achieved by adding hard particles was developed.
Technical Paper

The New Toyota Inline 4-Cylinder 2.5L Gasoline Engine

2017-03-28
2017-01-1021
In order to adapt to energy security and the changes of global-scale environment, further improvement of fuel economy and adaptation to each country’s severer exhaust gas emission regulation are required in an automotive engine. To achieve higher power performance with lower fuel consumption, the engine’s basic internal design such as an engine block and cylinder head were changed and the combustion speed was dramatically increased. Consequently, stroke-bore ratio and valve layout were optimized. Also, both flow coefficient and intake tumble ratio port were improved by adopting a laser cladded valve seat. In addition, several new technologies were adopted. The Atkinson cycle using a new Electrical VVT (Variable Valve Timing) and new combustion technology adopting new multi-hole type Direct fuel Injector (DI) improved engine power and fuel economy and reduced exhaust emissions.
Journal Article

Development of Ignition Technology for Dilute Combustion Engines

2017-03-28
2017-01-0676
In recent years, from a viewpoint of global warming and energy issues, the need to improve vehicle fuel economy to reduce CO2 emission has become apparent. One of the ways to improve this is to enhance engine thermal efficiency, and for that, automakers have been developing the technologies of high compression ratio and dilute combustion such as exhaust gas recirculation (EGR), and lean combustion. Since excessive dilute combustion causes the failure of flame propagation, combustion promotion by intensifying in-cylinder turbulence has been indispensable. However, instability of flame kernel formation by gas flow fluctuation between combustion cycles is becoming an issue. Therefore, achieving stable flame kernel formation and propagation under a high dilute condition is important technology.
Journal Article

New RWD 10 Speed Automatic Transmission for Passenger Vehicles

2017-03-28
2017-01-1097
Aisin AW (AW) and Toyota Motor Corporation (TMC) have developed a new rear wheel drive (RWD) 10-speed automatic transmission, AWR10L65 (TMC name: AGA0), suitable for RWD/AWD luxury passenger cars and sports cars. This 10-speed automatic transmission provides enhanced drivability leading to outstanding driver satisfaction. This has been accomplished using a close ratio gear train with optimized gear steps for rhythmic shift changes and quick acceleration. Low rpm lock-up and highly responsive shift changes result in a direct shift feel. This automatic transmission contributes to improved fuel economy by having higher efficiency and lower mass than current 8-speed RWD automatic transmissions.
X