Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Trim-structure interface modelling and simulation approaches for FEM applications

2024-06-12
2024-01-2954
Trim materials are often used for vibroacoustic energy absorption purposes within vehicles. To estimate the sound impact at a driver’s ear, the substructuring approach can be applied. Thus, transfer functions are calculated starting from the acoustic source to the car body, from the car body to the trim and, finally, from the trim to the inner cavity where the driver is located. One of the most challenging parts is the calculation of the transfer functions from the car body inner surface to the bottom trim surface. Commonly, freely laying mass-spring systems (trims) are simulated with a fixed boundary and interface phenomena such as friction, stick-slip or discontinuities are not taken into consideration. Such an approach allows for faster simulations but results in simulations strongly overestimating the energy transfer, particularly in the frequency range where the mass-spring system’s resonances take place.
Technical Paper

Study of Braking Characteristics of New Manual Braking System (1st Report)

2024-04-09
2024-01-2497
The purpose of this study is to propose braking characteristics that are easy for drivers to handle in a system in which braking and driving operations are performed by hand. Genetic algorithm optimization of braking characteristics showed that the best deceleration tracking was achieved by an FG diagram with a logarithmic function shape. In contrast, the slope of the optimal FG diagram tended to decrease as the driver's proportional gain increased.
Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Technical Paper

Deployment of OTA-Upgradable Teammate Advanced Drive

2022-03-29
2022-01-0063
Teammate Advanced Drive is a driving support system with state-of-the-art automated driving technology that has been developed for customers’ safe and secure driving on highways based on the Toyota’s Mobility Teammate Concept. This SAE Level 2 (L2) system assists overtaking, lane changes, and branching to the destination, in addition to providing hands-free lane centering and car following. The automated driving technology includes self-localization onto a High Definition Map, multi-modal sensing to cover 360 degrees of the surrounding environment using fusion of LiDARs, cameras, and radars, and a redundant architecture to realize fail-safe operation when a malfunction or system limitation occurs. High-performance computing is provided to implement deep learning for predicting and responding to various situations that may be encountered while driving.
Technical Paper

Road Crossing Assistance Method Using Object Detection Based on Deep Learning

2022-03-29
2022-01-0149
This paper describes a method for assisting pedestrians to cross a road. As motorization develops, pedestrian protection techniques are becoming more and more important. Advanced driving assistance systems (ADAS) are improving rapidly to provide even greater safety. However, since the accident risk of pedestrians remains high, the development of an advanced walking assistance system for pedestrian protection may be an effective means of reducing pedestrian accidents. Crossing a road is one of the highest risk events, and is a complex phenomenon that consists of many dynamically changing elements such as vehicles, traffic signals, bicycles, and the like. A road crossing assistance system requires three items: real-time situational recognition, a robust decision-making function, and reliable information transmission. Edge devices equipped with autonomous systems are one means of achieving these requirements.
Journal Article

Teammate Advanced Drive System Using Automated Driving Technology

2021-04-06
2021-01-0068
Woven Core, Inc. has developed Teammate Advanced Drive, a driving support system with state-of-the-art automated driving technology based on the Mobility Teammate Concept by Toyota Motor Corporation. Teammate Advanced Drive enables intelligent Ramp to Ramp hands-off driving on highways. The system features a self-localization estimation system that uses an HD-Map (High Definition Map) and high-level redundancy across sensors, computing, actuators, power supplies, and data communication. The system also includes digital data uploading and downloading capabilities wirelessly OTA (Over the Air) in order to provide customers the latest map updates as well as new software features and upgraded performance. A number of characteristically unique sensors have been combined to monitor the entire perimeter of the vehicle with high reliability.
Technical Paper

Student Concept Vehicle: Development and Usability of an Innovative Holographic User Interface Concept and a Novel Parking Assistance System Concept

2019-04-02
2019-01-0396
The Deep Orange program is a concept vehicle development program focused on providing hands-on experience in design, engineering, prototyping and production planning as part of students’ two-year MS graduate education. Throughout this project, the team was challenged to create innovative concepts during the ideation phase as part of building the running vehicle. This paper describes the usability studies performed on two of the vehicle concepts that require driver interaction. One concept is a human machine interface (HMI) that uses a holographic companion that can act as a concierge for all functions of the vehicle. After creating a prototype using existing technologies and developing a user interface controlled by hand gestures, a usability study was completed with older adults. The results suggest the input method was not intuitive. Participants demonstrated better performance with tasks using discrete hand motions in comparison to those that required continuous motions.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Reference PMHS Sled Tests to Assess Submarining of the Small Female

2018-11-12
2018-22-0003
In the last decade, extensive efforts have been made to understand the physics of submarining and its consequences in terms of abdominal injuries. For that purpose, 27 Post Mortem Human Subject (PMHS) tests were performed in well controlled conditions on a sled and response corridors were provided to assess the biofidelity of dummies or human body models. All these efforts were based on the 50th percentile male. In parallel, efforts were initiated to transfer the understanding of submarining and the prediction criteria to the THOR dummies. Both the biofidelity targets and the criteria were scaled down from the 50th percentile male to the 5th percentile THOR female. The objective of this project was to run a set of reference PMHS tests in order to check the biofidelity of the THOR F05 in terms of submarining. Three series of tests were performed on nine PMHS, the first one was designed to avoid submarining, the second and third ones were designed to result in submarining.
Technical Paper

A Fluid-Structure Interaction Scheme for Prediction of Flow-Induced Low Frequency Booming Noise

2018-06-13
2018-01-1521
The analysis of the acoustic behavior of flow fields has gained importance in recent years, especially in the automotive industry. The comfort of the driver is heavily influenced by the noise levels and characteristics, especially during long distance drives. Simulation tools can help to analyze the acoustic properties of a car at an early stage of the development process. This work focuses on the low-frequency sound effects, which can be a significant noise component under certain operating conditions. As a first step in the fluid-structure interaction workflow, the flow around a series-production vehicle is simulated, including passenger cabin and underhood flow. The complexity of this model poses extensive demands on the simulation software, concerning meshing, turbulence modeling and level of parallelism. We conducted a transient simulation of the compressible fluid flow, using a hybrid RANS/LES approach.
Journal Article

Rubber Suspension Bushing Model Identified by General Design Parameters for Initial Design Phase

2018-04-03
2018-01-0693
This article proposes a rubber suspension bushing model considering amplitude dependence as a useful tool at the initial design phase. The purpose of this study is not to express physical phenomena accurately and in detail and to explore the truth academically, but to provide a useful design method for initial design phase. Experiments were carried out to verify several dynamic characteristics of rubber bushings under vibration up to a frequency of 100 Hz, which is an important frequency range when designing ride comfort performance. When dynamic characteristic theory and the geometrical properties of the force-displacement characteristic curve were considered using these dynamic characteristics as assumptions, an equation was derived that is capable of calculating the dynamic stiffness under an arbitrary amplitude by identifying only two general design parameters (dynamic stiffness and loss factor) under a reference amplitude.
Technical Paper

Theory of Collision Avoidance Capability in Automated Driving Technologies

2018-04-03
2018-01-0044
This paper proposes a theory to analyze the collision avoidance capability of automated driving technologies. The theory gives answers to a fundamental question whether automated vehicles fall into extreme conditions at all rather than another question how a vehicle reacts under extreme conditions (is it as safe as driver?). The theory clarifies the following matters: There are two types of hazards to cause collisions, cognitive hazards and behavioral hazards. Cognitive hazards are handled by controlling the upper limit speed of the automated vehicle including when stopped. There are two methods for handling behavioral hazards, preparation and response. The response known well is the coping method activated when the hazard is detected in the dynamic (operational) level. The preparation is the coping method operating at all time in the semantic (tactical) level.
Technical Paper

Development of a New 6-Speed FWD Manual Transmission

2018-04-03
2018-01-0392
Environmental awareness has increased on a global scale which pushed for a heavier demand for weight reduction and high transmission efficiency on manual transmissions (hereafter referred to as the “MT”) in improving vehicle driving and fuel economy performance. Comfortable shift feel is also continuously in demand by the customer because its sensitive performance can be directly recognized by the driver which may determine the transmission’s merchantability. The newly developed 6-speed MT (hereafter referred to as the “6MT”) has achieved size reduction (compact size), weight reduced, better fuel efficiency, and improvement in the shift feel which will continue to maintain its’ competitiveness in the future.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

2017-03-28
2017-01-1409
Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
Technical Paper

Feasibility Study of Drowsy Driving Prediction based on Eye Opening Time

2017-03-28
2017-01-1398
Since drowsy driving is a major cause of serious traffic accidents, there is a growing requirement for drowsiness prevention technologies. This study proposes a drowsy driving prediction method based on eye opening time. One issue of using eye opening time is predicting strong drowsiness before the driver actually feels sleepy. Because overlooking potential hazards is one of the causes of traffic accidents and is closely related to driver cognition and drowsiness, this study focuses on eye opening movements during driving. First, this report describes hypotheses concerning drowsiness and eye opening time based on the results of previous studies. It is assumed that the standard deviation of eye opening time (SDEOP) indicates driver drowsiness and the following two transitions are considered: increasing and decreasing SDEOP. To confirm the hypotheses, the relationship between drowsiness and SDEOP was investigated.
Journal Article

Development of Innovative Toyota 10-Speed Longitudinal Automatic Transmission

2017-03-28
2017-01-1099
Toyota Motor Corporation has developed an innovative 10-speed longitudinal automatic transmission called the Direct Shift-10AT. The Direct Shift-10AT is a significant contributor to the excellent dynamic performance of the Lexus LC500. A wide gear spread with close gear ratios allows for rhythmical shifting, smooth and powerful acceleration from a standing start, along with quiet and relaxed high- speed driving due to low engine speeds. The lock-up area is expanded to a wider range of vehicle speeds (excluding low-speed regions such as when starting off), by the adoption of a multi-plate lock-up clutch, a newly developed torque converter, and a high-precision controller. As a result, the shift control can match the driver's intended operation more directly because the main cause of the response delay (transient changes in engine speed (flare)) is eliminated. Furthermore, fuel economy is improved due to the adoption of low friction clutches.
Technical Paper

Investigation of Pelvic Injuries on Eighteen Post Mortem Human Subjects Submitted to Oblique Lateral Impacts

2016-11-07
2016-22-0005
The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries.
Journal Article

Improvement of Ride Comfort by Unsprung Negative Skyhook Damper Control Using In-Wheel Motors

2016-04-05
2016-01-1678
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
Journal Article

Ride Comfort Analysis Considering Suspension Friction with Series Rigidity

2016-04-05
2016-01-1679
A dynamics model considering series rigidity was constructed to examine suspension friction, which has a major effect on ride comfort on paved roads. The friction characteristics of the bushings, ball joints, and shock absorbers are expressed with series elastic elements such as arm rigidity and the spring constant of the oil seals. It was confirmed that the calculated values for the overall spring constant and damping coefficient of the suspension virtually matched values measured in a 4-post shaker test. In addition, the results of analysis using this dynamics model confirmed that the degree of friction affects both the damping coefficient and the spring constant of the suspension, especially when the series rigidity is high. Also highly rigid friction has an adverse effect on sprung motion in frequency ranges above 15 Hz. After suspension enhancements were adopted based on these findings, 4-post shaker tests confirmed that sprung motion above 2 Hz improved..
Journal Article

Technical Development of Electro Magnetic Compatibility for Plug-in Hybrid Vehicle / Electric Vehicle Using Wireless Power Transfer System

2016-04-05
2016-01-1161
In 2007, researchers at the Massachusetts Institute of Technology successfully completed a Wireless Power Transfer (WPT) experiment. Ever since, interest in WPT has been growing. At Toyota, we have been developing the underlying technology of a WPT system. Simultaneously we have been working with regulatory committees to create a standard for WPT. In particular, there are concerns that WPT’s radiated emissions could cause harm to humans and the neighboring electronic equipment. There are many challenges that need to be overcome, but a key concern is understanding WPT’s electromagnetic compatibility (EMI: Electro-Magnetic Interference and EMF: Electro-Magnetic Field). In this paper, we show the technical issues, the evaluation method, and the development status of EMI and EMF on PHVs/EVs when using WPT. For Electromagnetic interference (EMI) performance, we investigated both an open area test site and an electromagnetic anechoic chamber as evaluation environments.
X