Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Benchmarking Methods for Electric Vehicle Drive Units

2024-04-09
2024-01-2270
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a development project was started to study various test methods to benchmark Electric Drive Units (EDUs) consisting of an electric motor, inverter and a speed-reduction gearset. Several test methods were identified for consideration, including both in-vehicle testing of the complete EDU and stand-alone testing of the EDU and its subcomponents after removal from the vehicle. In all test methods explored, sweeps of speed and torque test points were conducted while collecting key EDU data required to determine efficiency, including motor torque and speed, direct current (DC) battery voltage and current into the inverter, and three-phase alternating current (AC) phase voltages and currents out of the inverter and into the electric motor.
Journal Article

Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

2018-04-03
2018-01-0319
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty (LD) automotive technologies to support the setting of appropriate national greenhouse gas (GHG) standards and to evaluate the impact of new technologies on in-use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine-dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/Controller Area Network (CAN) bus data were recorded.
Journal Article

Alternative Heavy-Duty Engine Test Procedure for Full Vehicle Certification

2015-09-29
2015-01-2768
In 2015 the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Transportation's National Highway Traffic Safety Administration (NHTSA) proposed a new steady-state engine dynamometer test procedure by which heavy-duty engine manufacturers would be required to create engine fuel rate versus engine speed and torque “maps”.[1] These maps would then be used within the agencies' Greenhouse Gas Emission Model (GEM)[2] for full vehicle certification to the agencies' proposed heavy-duty fuel efficiency and greenhouse gas (GHG) emissions standards. This paper presents an alternative to the agencies' proposal, where an engine is tested over the same duty cycles simulated in GEM. This paper explains how a range of vehicle configurations could be specified for GEM to generate engine duty cycles that would then be used for engine testing.
Journal Article

Determination of PEMS Measurement Allowances for Gaseous Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program Part 3 – Results and Validation

2009-04-20
2009-01-0938
Beginning in 2007, heavy-duty engine manufacturers in the U.S. have been responsible for verifying the compliance on in-use vehicles with Not-to-Exceed (NTE) standards under the Heavy-Duty In-Use Testing Program (HDIUT). This in-use testing is conducted using Portable Emission Measurement Systems (PEMS) which are installed on the vehicles to measure emissions during real-world operation. A key component of the HDIUT program is the generation of measurement allowances which account for the relative accuracy of PEMS as compared to more conventional, laboratory based measurement techniques. A program to determine these measurement allowances for gaseous emissions was jointly funded by the U.S. Environmental Protection Agency (EPA), the California Air Resources Board (CARB), and various member companies of the Engine Manufacturer's Association (EMA).
Technical Paper

Evaluating Real-World Fuel Economy on Heavy Duty Vehicles using a Portable Emissions Measurement System

2006-10-31
2006-01-3543
Current SAE practices for evaluating potential improvements in fuel economy on heavy-duty vehicles rely on gravimetric measurements of fuel tanks. However, the recent evolution of portable emissions measurement systems (PEMS) offers an alternative means of evaluating real-world fuel economy that may be faster and more cost effective. This paper provides a direct comparison of these two methods based on a recent EPA study conducted at Southwest Research Institute. More than 228 on-road tests were performed on two pairs of class 8 tractor-trailers according to SAE test procedure J1321 in an assessment of various chassis components designed to reduce drag losses on the vehicle. During these tests, SEMTECH-D™ portable emissions measurement systems from Sensor's, Incorporated were operating in each of the vehicles to evaluate emissions and to provide a redundant measure of fuel economy.
Technical Paper

Fuel Economy Improvements and NOx Reduction by Reduction of Parasitic Losses: Effect of Engine Design

2006-10-31
2006-01-3474
Reducing aerodynamic drag and tire rolling resistance in trucks using cooled EGR engines meeting EPA 2004 emissions standards has been observed to result in increases in fuel economy and decreases in NOx emissions. We report here on tests conducted using vehicles equipped a non-EGR engine meeting EPA 2004 emission standards and an electronically-controlled engine meeting EPA 1998 emissions standards. The effects of trailer fairings and single-wide tires on fuel economy and NOx emissions were tested using SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and by the gravimetric method specified by test procedure J1321. Fuel consumption decreased and fuel economy increased by a maximum of about 10 percent, and NOx emissions decreased by a maximum of 20 percent relative to baseline.
Technical Paper

Effect of Single Wide Tires and Trailer Aerodynamics on Fuel Economy and NOx Emissions of Class 8 Line-Haul Tractor-Trailers

2005-11-01
2005-01-3551
We hypothesize that components designed to improve fuel economy by reducing power requirements should also result in a decrease in emissions of oxides of nitrogen (NOx). Fuel economy and NOx emissions of a pair of class 8 tractor-trailers were measured on a test track to evaluate the effects of single wide tires and trailer aerodynamic devices. Fuel economy was measured using a modified version of SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and correlated to fuel meter measurements. Tests were conducted using drive cycles simulating highway operations at 55 mph and 65 mph and suburban stop-and-go traffic. The tests showed a negative correlation (significant at p < 0.05) between fuel economy and NOx emissions. Single wide tires and trailer aerodynamic devices resulted in increased fuel economy and decreased NOx emissions relative to the baseline tests.
Technical Paper

On-road Testing and Characterization of Fuel Economy of Light-Duty Vehicles

2005-04-11
2005-01-0677
The potential discrepancy between the fuel economy shown on new vehicle labels and that achieved by consumers has been receiving increased attention of late. EPA has not modified its labeling procedures since 1985. It is likely possible that driving patterns in the U.S. have changed since that time. One possible modification to the labeling procedures is to incorporate the fuel economy measured over the emission certification tests not currently used in deriving the fuel economy label (i.e., the US06 high speed and aggressive driving test, the SC03 air conditioning test and the cold temperature test). This paper focuses on the US06 cycle and the possible incorporation of aggressive driving into the fuel economy label. As part of its development of the successor to the MOBILE emissions model, the Motor Vehicle Emission Modeling System (MOVES), EPA has developed a physically-based model of emissions and fuel consumption which accounts for different driving patterns.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

Life-cycle Management in the Automotive Supply Chain: Results of a Survey of Saturn Tier I Suppliers

2000-04-26
2000-01-1463
Saturn Corporation and its suppliers are partnering with the U.S. Environmental Protection Agency (EPA) Design for the Environment (DfE) Program and the University of Tennessee (UT) Center for Clean Products and Clean Technologies (CCPCT) in a project to develop a model for life-cycle management (LCM). This paper presents key findings from the first phase of the project, a survey by Saturn of its suppliers to determine their interests and needs for a supply chain LCM project, and identifies framework strategies for successful LCM.
Technical Paper

Nonroad Engine Activity Analysis and Transient Cycle Generation

1999-09-14
1999-01-2800
The United States Environmental Protection Agency (EPA) has initiated Phase I of a regulatory program to control exhaust emissions of nonroad diesel engines over 37 kW. Central to any emissions regulation is the test procedure, which must include an appropriate test cycle. Based on actual in-use speed and estimated torque data collected from an agricultural tractor, a backhoe-loader, and a crawler tractor, three duty cycles were developed. Using an iterative process, comparison of chi-square statistical data was used to identify representative microtrips, segments of engine operation gathered during performance of selected activities. Representative microtrips for specific activities for a particular nonroad application were “strung” together to make up a test cycle. Before accepting the test cycle, data for the cycle was compared to statistical data used to characterize the raw data in an effort to validate that the cycle was representative of the raw data.
Technical Paper

Alternative Techniques for Detecting Excessive Evaporative Emissions During I/M Tests

1996-10-01
962093
A modified constant volume sampling (CVS) system has been used to sample fugitive hydrocarbon (HC) emissions to determine whether such systems can help identify excess vehicular HC sources, such as leaking gas caps. The approach was successful in distinguishing tightly sealed, marginally leaking and grossly leaking caps. The technique may be useful in motor vehicle inspection and maintenance (I/M) facilities as a less intrusive alternative to techniques requiring pressurization of the fuel system.
Technical Paper

An Investigation of the Effect of Differing Filter Face Velocities on Particulate Mass Weight from Heavy-Duty Diesel Engines

1996-02-01
960253
Due to continuing reductions in EPA's emission standard values for exhaust particulate emissions, industry production has shifted towards engines that produce very low amounts of particulate emissions. Thus, it is very possible that future engines will challenge the error range of the current instrumentation and procedures used to measure particulate emissions by being designed to produce extremely low levels of particulates. When low particulate emitting engines are sampled at low flowrates, the resulting filter loadings may violate the minimum filter loading recommendation in the Heavy Duty Federal Test Procedure [1]. Conversely, higher flow rates may be an inappropriate option for increasing filter loading due to the possibility of stripping volatile organic compounds from the particulate sample or otherwise artificially reducing the accumulated mass [2].
Technical Paper

Operating Characteristics of Zirconia Galvanic Cells (Lambda Sensors) in Automotive Closed-Loop Emission Control Systems

1992-02-01
920289
Simple tests were performed to investigate the operating characteristics of zirconia galvanic cells (lambda sensors) in automotive closed loop “three-way” emission control systems. Commercially available cells were exposed to typical gaseous components of exhaust gas mixtures. The voltages generated by the cells were at their maximum values when hydrogen, and, in some instances, carbon monoxide, was available for reaction with atmospheric oxygen that migrated through the cells' ceramic thimbles in ionic form. This dependence of galvanic activity on the availability of these particular reducing agents indicated that the cells were voltaic devices which operated as oxidation/reduction reaction cells, rather than simple oxygen concentration cells.
Technical Paper

Detection of Catalyst Failure On-Vehicle Using the Dual Oxygen Sensor Method

1991-02-01
910561
On-vehicle proof-of-concept testing was conducted to evaluate the ability of the dual oxygen sensor catalyst evaluation method to identify serious losses in catalyst efficiency under actual vehicle operating conditions. The dual oxygen sensor method, which utilizes a comparison between an upstream oxygen sensor and an oxygen sensor placed downstream of the catalyst, was initially studied by the Environmental Protection Agency (EPA) under steady-state operating conditions on an engine dynamometer and reported in Clemmens, et al. (1).* At the time that study was released, questions were raised as to whether the technological concepts developed on a test fixture could be transferred to a vehicle operating under normal transient conditions.
Technical Paper

Recommended I/M Short Test Procedures for the 1990's: Six Alternatives

1991-02-01
910338
This report describes in detail new test procedures designed to minimize test variability, and the resulting false failures of new technology vehicles. There are currently six promulgated test procedures. The new procedures differ from the current ones in that they include controlled preconditioning, second chance testing, and sampling and score selecting algorithms. These are intended to minimize the variability in testing conditions and thereby reduce false failures of clean vehicles. High emitting vehicles which have been escaping detection with the current test procedures may continue to do so under the new ones. It is EPA's hope that these new procedures will improve the possibility of using more stringent cutpoints and non-idle test modes in the future to detect these high emitters by eliminating the additional false failures that would otherwise occur by instituting such measures under current procedures.
Technical Paper

Inspection/Maintenance in the 1990's

1987-08-01
870621
In the 1990's there will be a different mix of vehicle technologies than existed in the late 1970's when inspection/Maintenance (I/M) programs were first mandated. These changes include the widespread use of “closed-loop” computer control of engine parameters and fuel injection. Several studies by EPA are examined to determine the effect of these changes on existing I/M programs and to investigate new methods of vehicle inspection. The report discusses the effectiveness of a standard idle emission test versus other inspection methods, the role of proper preconditioning, self-diagnostic trouble code checks as a method to identify high emitting vehicles, uncertainties in predicting tampering and misfueling rates for the future, problems with decentralized programs, and the effectiveness of I/M repairs in reducing vehicle emissions as measured on the Federal Test Procedure.
Technical Paper

Light Duty Automotive Trends Through 1986

1986-04-01
860366
This, the fourteenth in this series of papers, examines trends in fuel economy, technology usage and estimated 0 to 60 MPH acceleration time for model year 1986 passenger cars. Comparisons with previous year's data are made for the fleet as a whole and using three measures of vehicle/engine size: number of cylinders, EPA car class, and inertia weight class. Emphasis on vehicle performance and fuel metering has been expanded and analysis of individual manufacturers has been deemphasized; comparisons of the Domestic, European, and Japanese market sectors are given increased emphasis.
Technical Paper

Light Duty Automotive Fuel Economy … Trends thru 1985

1985-05-01
850550
This, the thirteenth in a series of papers on trends in EPA fuel economy, covers both passenger cars and light trucks and concentrates on the current model year, 1985. It differs from previous papers in two ways: 1) Model years 1975, 1980 and 1985 are highlighted, with the model years in between these rarely discussed; 2) The progress of the industry, as a whole, in improving fuel economy since 1975 is emphasized, and individual manufacturer data are de-emphasized. Conclusions are presented on the trends in fuel economy of the car and light truck fleets; the Domestic, European and Japanese market sectors; and various vehicle classes.
X