Refine Your Search

Topic

Author

Search Results

Technical Paper

Impact of a Split-Injection Strategy on Energy-Assisted Compression-Ignition Combustion with Low Cetane Number Sustainable Aviation Fuels

2024-04-09
2024-01-2698
The influence of a split-injection strategy on energy-assisted compression-ignition (EACI) combustion of low-cetane number sustainable aviation fuels was investigated in a single-cylinder direct-injection compression-ignition engine using a ceramic ignition assistant (IA). Two low-cetane number fuels were studied: a low-cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) with a derived cetane number (DCN) of 17.4 and a binary blend of ATJ with F24 (Jet-A fuel with military additives, DCN 45.8) with a blend DCN of 25.9 (25 vol.% F24, 75 vol.% ATJ). A pilot injection mass sweep (3.5-7.0 mg) with constant total injection mass and an injection dwell sweep (1.5-3.0 ms) with fixed main injection timing was performed. Increasing pilot injection mass was found to reduce cycle-to-cycle combustion phasing variability by promoting a shorter and more repeatable combustion event for the main injection with a shorter ignition delay.
Technical Paper

Investigation of Premixed Fuel Composition and Pilot Reactivity Impact on Diesel Pilot Ignition in a Single-Cylinder Compression Ignition Engine

2023-04-11
2023-01-0282
This work experimentally investigates the impact of premixed fuel composition (methane/ethane, methane/propane, and methane/hydrogen mixtures having equivalent chemical energy) and pilot reactivity (cetane number) on diesel-pilot injection (DPI) combustion performance and emissions, with an emphasis on the pilot ignition delay (ID). To support the experimental pilot ignition delay trends, an analysis technique known as Mixing Line Concept (MLC) was adopted, where the cold diesel surrogate and hot premixed charge are envisioned to mix in a 0-D constant volume reactor to account for DPI mixture stratification. The results show that the dominant effect on pilot ignition is the pilot fuel cetane number, and that the premixed fuel composition plays a minor role. There is some indication of a physical effect on ignition for cases containing premixed hydrogen.
Journal Article

Non-Intrusive Accelerometer-Based Sensing of Start-Of-Combustion in Compression-Ignition Engines

2023-04-11
2023-01-0292
A non-intrusive sensing technique to determine start of combustion for mixing-controlled compression-ignition engines was developed based on an accelerometer mounted to the engine block of a 4-cylinder automotive turbo-diesel engine. The sensing approach is based on a physics-based conceptual model for the signal generation process that relates engine block acceleration to the time derivative of heat release rate. The frequency content of the acceleration and pressure signals was analyzed using the magnitude-squared coherence, and a suitable filtering technique for the acceleration signal was selected based on the result. A method to determine start of combustion (SOC) from the acceleration measurements is presented and validated.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Technical Paper

Parallel Load Balancing Strategies for Mesh-Independent Spray Vaporization and Collision Models

2021-04-06
2021-01-0412
Appropriate spray modeling in multidimensional simulations of diesel engines is well known to affect the overall accuracy of the results. More and more accurate models are being developed to deal with drop dynamics, breakup, collisions, and vaporization/multiphase processes; the latter ones being the most computationally demanding. In fact, in parallel calculations, the droplets occupy a physical region of the in-cylinder domain, which is generally very different than the topology-driven finite-volume mesh decomposition. This makes the CPU decomposition of the spray cloud severely uneven when many CPUs are employed, yielding poor parallel performance of the spray computation. Furthermore, mesh-independent models such as collision calculations require checking of each possible droplet pair, which leads to a practically intractable O(np2/2) computational cost, np being the total number of droplets in the spray cloud, and additional overhead for parallel communications.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Comparison of Linear, Non-Linear and Generalized RNG-Based k-epsilon Models for Turbulent Diesel Engine Flows

2017-03-28
2017-01-0561
In this work, linear, non-linear and a generalized renormalization group (RNG) two-equation RANS turbulence models of the k-epsilon form were compared for the prediction of turbulent compressible flows in diesel engines. The object-oriented, multidimensional parallel code FRESCO, developed at the University of Wisconsin, was used to test the alternative models versus the standard k-epsilon model. Test cases featured the academic backward facing step and the impinging gas jet in a quiescent chamber. Diesel engine flows featured high-pressure spray injection in a constant volume vessel from the Engine Combustion Network (ECN), as well as intake flows in a high-swirl diesel engine. For the engine intake flows, a model of the Sandia National Laboratories 1.9L light-duty single cylinder optical engine was used.
Technical Paper

CFD Study of Soot Reduction Mechanisms of Post-Injection in Spray Combustion

2015-04-14
2015-01-0794
The application of close-coupled post injections in diesel engines has been proven to be an effective in-cylinder strategy for soot reduction, without much fuel efficiency penalty. But due to the complexity of in-cylinder combustion, the soot reduction mechanism of post-injections is difficult to explain. Accordingly, a simulation study using a three dimensional computational fluid dynamics (CFD) model, coupled with the SpeedChem chemistry solver and a semi-detailed soot model, was carried out to investigate post-injection in a constant volume combustion chamber, which is more simple and controllable with respect to the boundary conditions than an engine. A 2-D axisymmetric mesh of radius 2 cm and height 5 cm was used to model the spray. Post-injection durations and initial oxygen concentrations were swept to study the efficacy of post-injection under different combustion conditions.
Technical Paper

Development of a Third Generation Dynamic Intake Air Simulator for Single-Cylinder Test Engines

2015-04-14
2015-01-0885
This paper details the development of a new dynamic Intake Air Simulator (IAS) for use on single-cylinder test engines, where the gas dynamics are controlled to accurately simulate those on a multi-cylinder engine during transient or steady-state operation. The third generation of Intake Air Simulators (IAS3) continues a development of new technology in the Powertrain Control Research Laboratory (PCRL) that replicates the multi-cylinder engine instantaneous intake gas dynamics on the single-cylinder engine, as well as the control of other boundary conditions. This is accomplished by exactly replicating the intake runner geometry between the plenum and the engine intake valve, and dynamically controlling the instantaneous plenum pressure feeding that runner, to replicate the instantaneous multi-cylinder engine intake flow.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Journal Article

Simultaneous Measurements of In-Cylinder Temperature and Velocity Distribution in a Small-Bore Diesel Engine Using Thermographic Phosphors

2013-04-08
2013-01-0562
In-cylinder temperature and velocity fields were quantified simultaneously in an optically accessible, small-bore diesel engine. A technique utilizing luminescence from Pr:YAG phosphor particles aerosolized into the intake air was used for temperature determination while particle image velocimetry (PIV) on the aforementioned phosphor particles was used to simultaneously measure the velocity field. The temperature and velocity fields were measured at different points throughout the compression stroke up to −30 CAD. Systematic interference due to emission from the piston window reduced the accuracy of the measurements at crank angles closer to TDC. Single-shot simultaneous measurements of the temperature and velocity fields were made using both unheated and heated intake temperatures. In both cases, cycle-to-cycle variations in the temperature and velocity fields were visible.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

RCCI Engine Operation Towards 60% Thermal Efficiency

2013-04-08
2013-01-0279
The present experimental study explored methods to obtain the maximum practical cycle efficiency with Reactivity Controlled Compression Ignition (RCCI). The study used both zero-dimensional computational cycle simulations and engine experiments. The experiments were conducted using a single-cylinder heavy-duty research diesel engine adapted for dual fuel operation, with and without piston oil gallery cooling. In previous studies, RCCI combustion with in-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injections of higher reactivity fuels was demonstrated to permit near-zero levels of NOx and PM emissions in-cylinder, while simultaneously realizing gross indicated thermal efficiencies in excess of 56%. The present study considered RCCI operation at a fixed load condition of 6.5 bar IMEP an engine speed of 1,300 [r/min]. The experiments used a piston with a flat profile with 18.7:1 compression ratio.
Technical Paper

High Resolution In-Cylinder Scalar Field Measurements during the Compression and Expansion Strokes

2013-04-08
2013-01-0567
High-resolution planar laser-induced fluorescence (PLIF) measurements were performed on the scalar field in an optical engine. The measurements were of sufficient resolution to fully resolve all of the length scales of the flow field through the full cycle. The scalar dissipation spectrum was calculated, and by fitting the results to a model turbulent spectrum the Batchelor scale of the turbulent flow was estimated. The scalar inhomogeneity was introduced by a low-momentum gas jet injection. A consistent trend was observed in all data; the Batchelor scale showed a minimum value at top dead center (TDC) and was nearly symmetric about TDC. Increasing the engine speed resulted in a decrease of the Batchelor scale, and the presence of a shroud on the intake valve, which increased the turbulence intensity, also reduced the Batchelor scale. The effect of the shrouded valve was less significant compared to the effect of engine speed.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Replicating Instantaneous Cylinder Mass Flow Rate with Parallel Continuously and Discretely Actuating Intake Plenum Valves

2012-04-16
2012-01-0417
The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
Technical Paper

Comparison of Diesel Combustion CFD Models and Evaluation of the Effects of Model Constants

2012-04-16
2012-01-0134
This paper describes numerical simulations that compare the performance of two combustion CFD models against experimental data, and evaluates the effects of combustion and spray model constants on the predicted combustion and emissions under various operating conditions. The combustion models include a Characteristic Time Combustion (CTC) model and CHEMKIN with reduced chemistry models integrated in the KIVA-3Vr2 CFD code. The diesel spray process was modeled using an updated version of the KH-RT spray model that features a gas jet submodel to help reduce numerical grid dependencies, and the effects of both the spray and combustion model constants on combustion and emissions were evaluated. In addition, the performance of two soot models was compared, namely a two-step soot model, and a more detailed model that considers soot formation from PAH precursors.
Technical Paper

Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline

2012-04-16
2012-01-1336
In automotive industry it has been a challenge to retain diesel-like thermal efficiency while maintaining low emissions. Numerous studies have shown significant progress in achieving low emissions through the introduction of common-rail injection systems, multiple injections and exhaust gas recirculation and by using a high octane number fuel, like gasoline, to achieve adequate premixing. On the other hand, low temperature combustion strategies, like HCCI and PCCI, have also shown promising results in terms of reducing both NOx and soot emissions simultaneously. With the increasing capacity of computers, multi-dimensional CFD engine modeling enables a reasonably good prediction of combustion characteristics and pollutant emissions, which is the motivation behind the present research. The current research effort presents an optimization study of light-duty compression ignition engine performance, while meeting the emission regulation targets.
Technical Paper

Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency

2012-04-16
2012-01-0383
The present experimental study explores the effects of compression ratio and piston design in a heavy-duty diesel engine operated with Reactivity Controlled Compression Ignition (RCCI) combustion. In previous studies, RCCI combustion with in-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injections of higher reactivity fuels was demonstrated to permit near-zero levels of NOX and PM emissions in-cylinder, while simultaneously realizing high thermal efficiencies. The present study consists of RCCI experiments at loads from 4 to 17 bar indicated mean effective pressure at engine speeds of 1,300 and 1,700 [rev/min]. The experiments used a modified piston to examine the effect of piston crevice volume, squish geometry, and compression ratio on performance and efficiency.
X