Refine Your Search

Topic

Author

Search Results

Technical Paper

Analysis and Testing of Optimal Power Control Strategy for NASA Moon Base Interconnected DC Microgrid System

2023-09-05
2023-01-1508
As a part of NASA’s efforts in space, options are being examined for an Artemis moon base project to be deployed. This project requires a system of interconnected, but separate, DC microgrids for habitation, mining, and fuel processing. This in-place use of power resources is called in-situ resource utilization (ISRU). These microgrids are to be separated by 9-12 km and each contains a photovoltaic (PV) source, energy storage systems (ESS), and a variety of loads, separated by level of criticality in operation. The separate microgrids need to be able to transfer power between themselves in cases where there are generation shortfall, faults, or other failures in order to keep more critical loads running and ensure safety of personnel and the success of mission goals. In this work, a 2 grid microgrid system is analyzed involving a habitation unit and a mining unit separated by a tie line.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Validation of a Theoretical Model for the Correction of Heat Transfer Effects in Turbocharger Testing through a Quasi-3D Model

2020-04-14
2020-01-1010
In the last few years, the effect of diabatic test conditions on compressor performance maps has been widely investigated, leading some Authors to propose different correction models. The accuracy of turbocharger performance map constitute the basis for the tuning and validation of a numerical method, usually adopted for the prediction of engine-turbocharger matching. Actually, it is common practice in automotive applications to use simulation codes, which can either require measured compression ratio and efficiency maps as input values or calculate them “on the fly” throughout specific sub-models integrated in the numerical procedures. Therefore, the ability to correct the measured performance maps taking into account internal heat transfer would allow the implementation of commercial simulation codes used for engine-turbocharger matching calculations.
Technical Paper

Development and Application of a Quasi-3D Model for the Simulation of Radial Compressors of Turbochargers for Internal Combustion Engines

2019-09-09
2019-24-0187
In this work the 3Dcell method, a quasi3D approach developed by the Internal Combustion Engine Group at Politecnico di Milano, has been extended and applied to the fluid dynamic simulation of turbocharging devices for internal combustion engines, focusing on the compressor side. The 3Dcell is based on a pseudo-staggered leapfrog method applied to the governing equation of a 1D problem arbitrarily oriented in space. The system of equations is solved referring to the relative system in the rotating zone, whereas the absolute reference system has been used elsewhere. The vaneless diffuser has been modelled resorting to the conservation of the angular momentum of the flow stream in the tangential direction, combined with the solution of the momentum equation in the radial direction.
Technical Paper

Identification and Characterization of Steady Spray Conditions in Convergent, Single-Hole Diesel Injectors

2019-04-02
2019-01-0281
Reduced-order models typically assume that the flow through the injector orifice is quasi-steady. The current study investigates to what extent this assumption is true and what factors may induce large-scale variations. Experimental data were collected from a single-hole metal injector with a smoothly converging hole and from a transparent facsimile. Gas, likely indicating cavitation, was observed in the nozzles. Surface roughness was a potential cause for the cavitation. Computations were employed using two engineering-level Computational Fluid Dynamics (CFD) codes that considered the possibility of cavitation. Neither computational model included these small surface features, and so did not predict internal cavitation. At steady state, it was found that initial conditions were of little consequence, even if they included bubbles within the sac. They however did modify the initial rate of injection by a few microseconds.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications

2017-09-04
2017-24-0026
The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
Technical Paper

Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy

2017-03-28
2017-01-0728
For lean or dilute, boosted gasoline compression-ignition engines operating in a low-temperature combustion mode, creating a partially stratified fuel charge mixture prior to auto-ignition can be beneficial for reducing the heat-release rate (HRR) and the corresponding maximum rate of pressure rise. As a result, partial fuel stratification (PFS) can be used to increase load and/or efficiency without knock (i.e. without excessive ringing). In this work, a double direct-injection (D-DI) strategy is investigated for which the majority of the fuel is injected early in the intake stroke to create a relatively well-mixed background mixture, and the remaining fuel is injected in the latter part of the compression stroke to produce greater fuel stratification prior auto-ignition. Experiments were performed in a 1-liter single-cylinder engine modified for low-temperature gasoline combustion (LTGC) research.
Journal Article

Energy Analysis of Low-Load Low-Temperature Gasoline Combustion with Auxiliary-Fueled Negative Valve Overlap

2017-03-28
2017-01-0729
In-cylinder reforming of injected fuel during an auxiliary negative valve overlap (NVO) period can be used to optimize main-cycle auto-ignition phasing for low-load Low-Temperature Gasoline Combustion (LTGC), where highly dilute mixtures can lead to poor combustion stability. When mixed with fresh intake charge and fuel, these reformate streams can alter overall charge reactivity characteristics. The central issue remains large parasitic heat losses from the retention and compression of hot exhaust gases along with modest pumping losses that result from mixing hot NVO-period gases with the cooler intake charge. Accurate determination of total cycle energy utilization is complicated by the fact that NVO-period retained fuel energy is consumed during the subsequent main combustion period. For the present study, a full-cycle energy analysis was performed for a single-cylinder research engine undergoing LTGC with varying NVO auxiliary fueling rates and injection timing.
Technical Paper

Penetration and combustion characterization of cavitating and non-cavitating fuel injectors under diesel engine conditions

2016-04-05
2016-01-0860
This work investigates the effects of cavitation on spray characteristics by comparing measurements of liquid and vapor penetration as well as ignition delay and lift-off length. A smoothed-inlet, converging nozzle (nominal KS1.5) was compared to a sharp-edged nozzle (nominal K0) in a constant-volume combustion vessel under thermodynamic conditions consistent with modern compression ignition engines. Within the near-nozzle region, the K0 nozzle displayed larger radial dispersion of the liquid as compared to the KS1.5 nozzle, and shorter axial liquid penetration. Moving downstream, the KS1.5 jet growth rate increased, eventually reaching a growth rate similar to the K0 nozzle while maintaining a smaller radial width. The increasing spreading angle in the far field creates a virtual origin, or mixing offset, several millimeters downstream for the KS1.5 nozzle.
Technical Paper

Low Cost Robotized Gearshift System for Formula SAE Vehicles

2016-04-05
2016-01-0003
This paper reports the studies, design and developments of an electronic electro-actuated gearshifter installed on the DP7, which is Politecnico di Milano car that took part at Formula SAE 2015 competitions in Hockenheim and Varano dè Melegari. The original idea was born to replace the hydraulic gearshift system used until 2011 because of its high weight and cost. After many evaluations about the kind of technology to use, made by previous team members in the electronic department, the final project was a fully electric shifter. This system has proven its qualities among which are lightness and low cost.
Technical Paper

Experimental Characterization of DI Gasoline Injection Processes

2015-09-01
2015-01-1894
This work investigates the injection processes of an eight-hole direct-injection gasoline injector from the Engine Combustion Network (ECN) effort on gasoline sprays (Spray G). Experiments are performed at identical operating conditions by multiple institutions using standardized procedures to provide high-quality target datasets for CFD spray modeling improvement. The initial conditions set by the ECN gasoline spray community (Spray G: Ambient temperature: 573 K, ambient density: 3.5 kg/m3 (∼6 bar), fuel: iso-octane, and injection pressure: 200 bar) are examined along with additional conditions to extend the dataset covering a broader operating range. Two institutes evaluated the liquid and vapor penetration characteristics of a particular 8-hole, 80° full-angle, Spray G injector (injector #28) using Mie scattering (liquid) and schlieren (vapor).
Journal Article

A Scale Adaptive Filtering Technique for Turbulence Modeling of Unsteady Flows in IC Engines

2015-04-14
2015-01-0395
Swirling flows are very dominant in applied technical problems, especially in IC engines, and their prediction requires rather sophisticated modeling. An adaptive low-pass filtering procedure for the modeled turbulent length and time scales is derived and applied to Menter' original k - ω SST turbulence model. The modeled length and time scales are compared to what can potentially be resolved by the computational grid and time step. If the modeled scales are larger than the resolvable scales, the resolvable scales will replace the modeled scales in the formulation of the eddy viscosity; therefore, the filtering technique helps the turbulence model to adapt in accordance with the mesh resolution and the scales to capture.
Journal Article

Combustion Recession after End of Injection in Diesel Sprays

2015-04-14
2015-01-0797
This work contributes to the understanding of physical mechanisms that control flashback, or more appropriately combustion recession, in diesel sprays. A large dataset, comprising many fuels, injection pressures, ambient temperatures, ambient oxygen concentrations, ambient densities, and nozzle diameters is used to explore experimental trends for the behavior of combustion recession. Then, a reduced-order model, capable of modeling non-reacting and reacting conditions, is used to help interpret the experimental trends. Finally, the reduced-order model is used to predict how a controlled ramp-down rate-of-injection can enhance the likelihood of combustion recession for conditions that would not normally exhibit combustion recession. In general, fuel, ambient conditions, and the end-of-injection transient determine the success or failure of combustion recession.
Journal Article

Investigation of Negative Valve Overlap Reforming Products Using Gas Sampling and Single-Zone Modeling

2015-04-14
2015-01-0818
Negative valve overlap (NVO) is a viable control strategy that enables low-temperature gasoline combustion (LTGC) at low loads. Thermal effects of NVO fueling on main combustion are well understood, but fuel reforming chemistry during NVO has not been extensively studied. The objective of this work is to analyze the impact of global equivalence ratio and available oxidizer on NVO product concentrations. Experiments were performed in a LTGC single-cylinder engine under a sweep of NVO oxygen concentration and NVO fueling rates. Gas sampling at the start and end of the NVO period was performed via a custom dump-valve apparatus with detailed sample speciation by gas chromatography. Single-zone reactor models using detailed chemistry at relevant mixing and thermodynamic conditions were used in parallel to the experiments to evaluate expected yields of partially oxidized species under representative engine time scales.
Technical Paper

A Low Cost System for Active Gear Shift and Clutch Control

2015-04-14
2015-01-0228
The objective of this study is to demonstrate the design and construction of an innovative active gear-shift and clutch for racecars, applied to a Formula Student car, based on the use of DC gear-motors. Racecars require extremely quick gear-shifts and every system to be as light as possible. The proposed solution is designed to reduce energy consumption, weight and improve gear-shift precision compared to traditionally employed electro-hydraulic solutions, although maintaining state of the art performances.
Technical Paper

More Leaders and Fewer Initiatives: Key Ideas for the Future of Engineering

2015-04-14
2015-01-0411
Panel Discussions held at the SAE World Congress in both 2013 and 2014 observed that a shortage of good quality engineering talent formed a chronic and major challenge. (“Good quality” refers to applicants that would be shortlisted for interview.) While doubts have been expressed in some quarters, the shortage is confirmed by automotive sector employers and the Panel's view was that it was symptomatic of a range of issues, all of which have some bearing on the future of the profession. Initiatives to improve recruitment and retention have had varying degrees of success. Efforts need to be intensified in primary schools where negative perceptions develop and deepen. Schemes like AWIM that operate on a large scale and are designed to supplement school curricula should operate at an international level. Universities represent the entry point into the engineering profession and their role in the recruitment process as well as education and training is crucial.
Technical Paper

An Extension of the Dynamic Mesh Handling with Topological Changes for LES of ICE in OpenFOAM®

2015-04-14
2015-01-0384
The paper focuses on the development of a mesh moving method based on non-conformal topologically changing grids applied to the simulation of IC engines, where the prescribed motion of piston and valves is accomplished by rigidly translating the sub-domain representing the moving component. With respect to authors previous work, a more robust and efficient algorithm to handle the connectivity of non-conformal interfaces and a mesh-motion solver supporting multiple layer addition/removal of cells, to decouple the time-step constraints of the mesh motion and of the fluid dynamics, has been implemented as a C++ library to extend the already existing classes for dynamic mesh handling of the finite-volume, open-source CFD code OpenFOAM®. Other new features include automatic decomposition of large multiple region domains to preserve processors load balance with topological changes for parallel computations and additional tools for automatic preprocessing and case setup.
Journal Article

Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography

2014-04-01
2014-01-1412
A full understanding and characterization of the near-field of diesel sprays is daunting because the dense spray region inhibits most diagnostics. While x-ray diagnostics permit quantification of fuel mass along a line of sight, most laboratories necessarily use simple lighting to characterize the spray spreading angle, using it as an input for CFD modeling, for example. Questions arise as to what is meant by the “boundary” of the spray since liquid fuel concentration is not easily quantified in optical imaging. In this study we seek to establish a relationship between spray boundary obtained via optical diffused backlighting and the fuel concentration derived from tomographic reconstruction of x-ray radiography. Measurements are repeated in different facilities at the same specified operating conditions on the “Spray A” fuel injector of the Engine Combustion Network, which has a nozzle diameter of 90 μm.
X