Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Effects of Exhaust Gas Hydrogen Addition and Oxygenated Fuel Blends on the Light-Off Performance of a Three-Way Catalyst

2019-12-19
2019-01-2329
A significant amount of harmful emissions pass unreacted through catalytic after-treatment devices for IC engines before the light-off temperature is reached, despite the high conversion efficiency of these systems in fully warm conditions. Further tightening of fleet targets and worldwide emission regulations will make a faster catalyst light-off to meet legislated standards hence reduce the impact of road transport on air quality even more critical. This work investigates the effect of adding hydrogen (H2) at levels up to 2500 ppm into the exhaust gases produced by combustion of various oxygenated C2-, C4- and renewable fuel molecules blended at 20 % wt/wt with gasoline on the light-off performance of a commercially available three-way catalyst (TWC) (0.61 L, Pd/Rh/Pt - 19/5/1, 15g). The study was conducted on a modified naturally aspirated, 1.4 L, four-cylinder, direct-injected, spark-ignition engine.
Technical Paper

Non-Spherical Particle Trajectory Modelling for Ice Crystal Conditions

2019-06-10
2019-01-1961
Aircraft icing is a significant issue for aviation safety. In this paper, recent developments for calculating the trajectory of non-spherical particles are used to determine the trajectory and impingement of ice crystals in aircraft icing scenarios. Two models are used, each formulated from direct numerical simulations, to give the drag, lift and torque correlations for various shaped particles. Previously, within the range of Reynolds number permitted in this study, it was only possible to model the trajectory and full rotational progression of cylindrical particles. The work presented in this paper allows for analysis of a wider range of ice shapes that are commonly seen in icing conditions, capturing the dynamics and behaviours specific to ice crystals. Previous limitations relate to the in ability to account for particle rotation and the dependency of force correlations on the measure of particle sphericity - which are now overcome.
Technical Paper

Investigating the Combustion and Emissions Characteristics of Biomass-Derived Platform Fuels as Gasoline Extenders in a Single Cylinder Spark-Ignition Engine

2017-10-08
2017-01-2325
The conversion of lignocellulosic biomass to liquid fuels presents an alternative to the current production of renewable fuels for IC engines from food crops. However, realising the potential for reductions in net CO2 emissions through the utilisation of, for example, waste biomass for sustainable fuel production requires that energy and resource inputs into such processes be minimised. This work therefore investigates the combustion and emission characteristics of five intermediate platform molecules potentially derived from lignocellulosic biomass: gamma-valerolactone (GVL), methyl valerate, furfuryl alcohol, furfural and 2-methyltetrahydrofuran (MTHF). The study was conducted on a naturally aspirated, water cooled, single cylinder spark-ignition engine. Each of the platform molecules were blended with reference fossil gasoline at 20 % wt/wt.
Technical Paper

Aspects of Numerical Modelling of Flash-Boiling Fuel Sprays

2015-09-06
2015-24-2463
Flash-boiling of sprays may occur when a superheated liquid is discharged into an ambient environment with lower pressure than its saturation pressure. Such conditions normally exist in direct-injection spark-ignition engines operating at low in-cylinder pressures and/or high fuel temperatures. The addition of novel high volatile additives/fuels may also promote flash-boiling. Fuel flashing plays a significant role in mixture formation by promoting faster breakup and higher fuel evaporation rates compared to non-flashing conditions. Therefore, fundamental understanding of the characteristics of flashing sprays is necessary for the development of more efficient mixture formation. The present computational work focuses on modelling flash-boiling of n-Pentane and iso-Octane sprays using a Lagrangian particle tracking technique.
Technical Paper

Engine Testing of Dissolved Sodium Borohydride for Diesel Combustion CO2 Scrubbing

2014-10-13
2014-01-2729
Improvements in the efficiency of internal combustion engines and the development of renewable liquid fuels have both been deployed to reduce exhaust emissions of CO2. An additional approach is to scrub CO2 from the combustion gases, and one potential means by which this might be achieved is the reaction of combustions gases with sodium borohydride to form sodium carbonate. This paper presents experimental studies carried out on a modern direct injection diesel engine supplied with a solution of dissolved sodium borohydride so as to investigate the effects of sodium borohydride on combustion and emissions. Sodium borohydride was dissolved in the ether diglyme at concentrations of 0.1 and 2 % (wt/wt), and tested alongside pure diglyme and a reference fossil diesel. The sodium borohydride solutions and pure diglyme were supplied to the fuel injector under an inert atmosphere and tested at a constant injection timing and constant engine indicated mean effective pressure (IMEP).
Technical Paper

Characterization of Flame Development with Hydrous and Anhydrous Ethanol Fuels in a Spark-Ignition Engine with Direct Injection and Port Injection Systems

2014-10-13
2014-01-2623
This paper presents a study of the combustion mechanism of hydrous and anhydrous ethanol in comparison to iso-octane and gasoline fuels in a single-cylinder spark-ignition research engine operated at 1000 rpm with 0.5 bar intake plenum pressure. The engine was equipped with optical access and tests were conducted with both Port Fuel Injection (PFI) and Direct Injection (DI) mixture preparation methods; all tests were conducted at stoichiometric conditions. The results showed that all alcohol fuels, both hydrous and anhydrous, burned faster than iso-octane and gasoline for both PFI and DI operation. The rate of combustion and peak cylinder pressure decreased with water content in ethanol for both modes of mixture preparation. Flame growth data were obtained by high-speed chemiluminescence imaging. These showed similar trends to the mass fraction burned curves obtained by in-cylinder heat release analysis for PFI operation; however, the trend with DI was not as consistent as with PFI.
Technical Paper

Developing Low Gasoline Particulate Emission Engines Through Improved Fuel Delivery

2014-10-13
2014-01-2843
Particulate emissions are of growing concern due to health impacts. Many urban areas around the world currently have particulate matter levels exceeding the World Health Organisation safe limits. Gasoline engines, especially when equipped with direct injection systems, contribute to this pollution. In recognition of this fact European limits on particulate mass and number are being introduced. A number of ways to meet these new stringent limits have been under investigation. The focus of this paper is on particulate emissions reduction through improvements in fuel delivery. This investigation is part of the author's ongoing particulate research and development that includes optical engine spray and combustion visualisation, CFD method development, engine and vehicle testing with the aim to move particulate emission development upstream in the development process.
Technical Paper

Computational Study of Hydrogen Direct Injection for Internal Combustion Engines

2013-10-14
2013-01-2524
Hydrogen has been largely proposed as a possible fuel for internal combustion engines. The main advantage of burning hydrogen is the absence of carbon-based tailpipe emissions. Hydrogen's wide flammability also offers the advantage of very lean combustion and higher engine efficiency than conventional carbon-based fuels. In order to avoid abnormal combustion modes like pre-ignition and backfiring, as well as air displacement from hydrogen's large injected volume per cycle, direct injection of hydrogen after intake valve closure is the preferred mixture preparation method for hydrogen engines. The current work focused on computational studies of hydrogen injection and mixture formation for direct-injection spark-ignition engines. Hydrogen conditions at the injector's nozzle exit are typically sonic.
Journal Article

Investigations on Deposit Formation in the Holes of Diesel Injector Nozzles

2011-08-30
2011-01-1924
Current developments in fuels and emissions regulations are resulting in an increasingly severe operating environment for diesel fuel injection systems. The formation of deposits within the holes or on the outside of the injector nozzle can affect the overall system performance. The rate of deposit formation is affected by a number of parameters, including operating conditions and fuel composition. For the work reported here an accelerated test procedure was developed to evaluate the relative importance of some of these parameters in a high pressure common rail fuel injection system. The resulting methodology produced measurable deposits in a custom-made injector nozzle on a single-cylinder engine. The results indicate that fuels containing 30%v/v and 100% Fatty Acid Methyl Ester (FAME) that does not meet EN 14214 produced more deposit than an EN590 petroleum diesel fuel.
Technical Paper

Deposit Formation in the Holes of Diesel Injector Nozzles: A Critical Review

2008-10-06
2008-01-2383
Current developments in fuels and emissions regulations are resulting in increasingly severe operating environment for the injection system. Formation of deposits within the holes of the injector nozzle or on the outside of the injector tip may have an adverse effect on overall system performance. This paper provides a critical review of the current understanding of the main factors affecting deposit formation. Two main types of engine test cycles, which attempt to simulate field conditions, are described in the literature. The first type involves cycling between high and low load. The second involves steady state operation at constant speed either at medium or high load. A number of influences on the creation of deposits are identified. This includes fouling through thermal condensation and cracking reactions at nozzle temperatures of around 300°C. Also the design of the injector holes is an influence, because it can influence cavitation.
Journal Article

Effect of the Molecular Structure of Individual Fatty Acid Alcohol Esters (Biodiesel) on the Formation of Nox and Particulate Matter in the Diesel Combustion Process

2008-06-23
2008-01-1578
Biodiesel is a renewable fuel which can be used as a direct replacement for fossil Diesel fuel as a calorific source in Diesel Engines. It consists of fatty acid mono-alkyl esters, which are produced by the trans-esterification reaction of plant oils with monohydric alcohols. The Plant oils and alcohols can both be derived from biomass, giving this fuel the potential for a sustainable carbon dioxide neutral life-cycle, which is an important quality with regard to avoiding the net emission of anthropogenic greenhouse gases. Depending on its fatty ester composition, Biodiesel can have varying physical and chemical properties which influence its combustion behaviour in a Diesel engine. It has been observed by many researchers that Biodiesel can sometimes lead to an increase in emissions of oxides of nitrogen (NOx) compared to fossil Diesel fuel, while emitting a lower amount of particulate mass.
Journal Article

Characteristics of Ethanol, Butanol, Iso-Octane and Gasoline Sprays and Combustion from a Multi-Hole Injector in a DISI Engine

2008-06-23
2008-01-1591
Recent pressures on vehicle manufacturers to reduce their average fleet levels of CO2 emissions have resulted in an increased drive to improve fuel economy and enable use of fuels developed from renewable sources that can achieve a net reduction in the CO2 output of each vehicle. The most popular choice for spark-ignition engines has been the blending of ethanol with gasoline, where the ethanol is derived either from agricultural or cellulosic sources such as sugar cane, corn or decomposed plant matter. However, other fuels, such as butanol, have also arisen as potential candidates due to their similarities to gasoline, e.g. higher energy density than ethanol. To extract the maximum benefits from these new fuels through optimized engine design and calibration, an understanding of the behaviour of these fuels in modern engines is necessary.
Technical Paper

Effect of Fuel Properties on Spray Development from a Multi-Hole DISI Engine Injector

2007-10-29
2007-01-4032
Extensive literature exists on spray development, mixing and combustion regarding engine modeling and diagnostics using single-component and model fuels. However, often the variation in data between different fuels, particularly relating to spray development and its effect on combustion, is neglected or overlooked. By injecting into a quiescent chamber, this work quantifies the differences in spray development from a multi-hole direct-injection spark-ignition engine injector for two single-component fuels (iso-octane and n-pentane), a non-fluorescing multi-component model fuel which may be used for in-cylinder Laser Induced Fluorescence experiments, and several grades of pump gasoline (with and without additives). High-speed recordings of the sprays were made for a range of fuel temperatures and gas pressures. It is shown that a fuel temperature above that of the lowest boiling point fraction of the tested fuel at the given gas pressure causes a convergence of the spray plumes.
Technical Paper

Effects on diesel combustion of the molecular structure of potential synthetic bio-fuel molecules

2007-09-16
2007-24-0125
Synthetic bio-fuels, which can be obtained through the gasification of biomass into synthesis gas and the subsequent catalytic reaction of the synthesis gas into liquid fuel molecules, could play a key-role in providing a sustainable source of automotive fuels during the coming decades. This paper presents an attempt to understand the effect of molecular structure of potential oxygenated synthetic bio-fuel molecules of different structure on the diesel combustion process in both stratified and homogeneous combustion modes. Specifically, the effects of molecular structure on the energy release rates, gaseous exhaust emissions and the sub-micron particulate matter distribution were examined. The experiments were carried out on a single-cylinder direct-injection diesel engine using a specially adapted common-rail fuel-system which allowed the injection of small single-molecule fuel samples at high pressure.
Technical Paper

Experimental Investigation into the Liquid Sheet Break-Up of High-Pressure DISI Swirl Atomizers

2003-10-27
2003-01-3102
This paper presents the results of an experimental study into the liquid sheet break-up mechanisms of high-pressure swirl atomizers of the type commonly used in direct-injection spark-ignition (DISI) engines. Sheet disintegration was investigated at two fuel pressures: 5 and 10 MPa, and three ambient back pressures: 50, 100 (atmospheric) and 200 kPa for a pre-production DISI injector. Microscopic images of the near-nozzle spray region were obtained with a high-speed rotating drum camera and copper vapour laser. For the range of conditions considered, the results show the initial break-up to occur in ‘perforated-sheet’ mode. A novel ‘void fraction’ analysis technique was applied to multiple images from the steady-state period of a single injection event in order to characterise and quantify details of the sheet break-up process. The sheet break-up lengths obtained by the authors were compared with the break-up lengths predicted by three commonly employed models from the literature.
Technical Paper

Effects of Fuel Injection Pressure in an Optically-Accessed DISI Engine with Side-Mounted Fuel Injector

2001-05-07
2001-01-1975
This paper presents the results of an experimental study into the effects of fuel injection pressure on mixture formation within an optically accessed direct-injection spark-ignition (DISI) engine. Comparison is made between the spray characteristics and in-cylinder fuel distributions due to supply rail pressures of 50 bar and 100 bar subject to part-warm, part-load homogeneous charge operating conditions. A constant fuel mass, corresponding to stoichiometric tune, was maintained for both supply pressures. The injected sprays and their subsequent liquid-phase fuel distributions were visualized using the 2-D laser Mie-scattering technique. The experimental injector (nominally a hollow-cone pressure-swirl design) was seen to produce a dense filled spray structure for both injection pressures under investigation. In both cases, the leading edge velocities of the main spray suggest the direct impingement of liquid fuel on the cylinder walls.
Technical Paper

Positioning Human Body Models with Lagrange Multipliers

1999-05-18
1999-01-1917
This paper describes a method for interactive manipulation of digital human models using the Lagrange multiplier method to simulate their motion under the approximation of first order dynamics, where F = mν. This method provides a natural framework for mixing rigid constraints with flexible goals in both Cartesian and joint space. Features like gravity and contact can thus be incorporated according to strict mathematical principles. We have implemented such a system for the specific task of positioning vehicle occupant models. Although the Lagrange multiplier method for solving constrained dynamics is well documented, its utility in this context has not been widely recognised.
Technical Paper

The Application of Phosphorescent Particle Tracking (PPT) to the Visualisation of Gas Flows in the Cylinder of a 1.8 Litre 4-Valve Engine

1999-03-01
1999-01-1109
This paper describes the application of a new technique, Phosphorescent Particle Tracking (PPT), to the visualisation of gas flow streams in the cylinder of an engine flow rig. This technique uses small phosphorescent tracer particles suspended in the air-stream to provide evidence of the gas flow profile as they are carried away from the plane of excitation. A two colour version of the technique is also presented. This latter technique is shown to have the potential to reveal the interaction or degree of stratification of two flow streams within the cylinder.
Technical Paper

Development of a Fuelling System to Reduce Cold-Start Hydrocarbon Emissions in an SI Engine

1996-05-01
961119
An air-assisted fuel vaporiser (AAFV), designed to replace the conventional fuelling system has been tested on a 3.0-litre development engine under simulated cold-Start conditions. Providing the cold engine with pre-vaporised fuel removed the need for an enriched mixture during start-up. Comparisons between the AAFV and standard fuelling systems were performed. Engine-out hydrocarbon (HC) exhaust emissions were measured during cold-start and the ensuing two minutes. Fuel spray characterisation was also conducted using a steady flow test rig designed to mimic inlet port conditions of air flow and manifold pressure over a wide range of engine operation.
X