Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Special User Shell Element for Coarse Mesh and High-Fidelity Fatigue Modeling of Spot-Welded Structures

2024-04-09
2024-01-2254
A special spot weld element (SWE) is presented for simplified representation of spot joints in complex structures for structural durability evaluation using the mesh-insensitive structural stress method. The SWE is formulated using rigorous linear four-node Mindlin shell elements with consideration of weld region kinematic constraints and force/moments equilibrium conditions. The SWEs are capable of capturing all major deformation modes around weld region such that rather coarse finite element mesh can be used in durability modeling of complex vehicle structures without losing any accuracy. With the SWEs, all relevant traction structural stress components around a spot weld nugget can be fully captured in a mesh-insensitive manner for evaluation of multiaxial fatigue failure.
Technical Paper

On Road vs. Off Road Low Load Cycle Comparison

2024-04-09
2024-01-2134
Reducing criteria pollutants while reducing greenhouse gases is an active area of research for commercial on-road vehicles as well as for off-road machines. The heavy duty on-road sector has moved to reducing NOx by 82.5% compared to 2010 regulations while increasing the engine useful life from 435,000 to 650,000 miles by 2027 in the United States (US). An additional certification cycle, the Low Load Cycle (LLC), has been added focusing on part load operation having tight NOx emissions levels. In addition to NOx, the total CO2 emissions from the vehicle will also be reduced for various model years. The off-road market is following with a 90% NOx reduction target compared to Tier 4 Final for 130-560 kW engines along with greenhouse gas targets that are still being established. The off-road market will also need to certify with a Low Load Application Cycle (LLAC), a version of which was proposed for evaluation in 2021.
Technical Paper

Finite Element Analyses of Macroscopic Stress-Strain Relations and Failure Modes for Tensile Tests of Additively Manufactured AlSi10Mg with Consideration of Melt Pool Microstructures and Pores

2023-04-11
2023-01-0955
Finite element (FE) analyses of macroscopic stress-strain relations and failure modes for tensile tests of additively manufactured (AM) AlSi10Mg in different loading directions with respect to the building direction are conducted with consideration of melt pool (MP) microstructures and pores. The material constitutive relations in different orientations of AM AlSi10Mg are first obtained from fitting the experimental tensile engineering stress-strain curves by conducting axisymmetric FE analyses of round bar tensile specimens. Four representative volume elements (RVEs) with MP microstructures with and without pores are identified and selected based on the micrographs of the longitudinal cross-sections of the vertical and horizontal tensile specimens. Two-dimensional plane stress elastic-plastic FE analyses of the RVEs subjected to uniaxial tension are then conducted.
Technical Paper

Effective Second Moment of Load Path (ESMLP) Method for Multiaxial Fatigue Damage and Life Assessment

2023-04-11
2023-01-0724
Time-domain and frequency domain methods are two common methods for fatigue damage and life assessment. The frequency domain fatigue assessment methods are becoming increasingly popular recently because of their unique advantages over the traditional time-domain methods. Recently, a series of moment of load path based multiaxial fatigue life assessment approaches have been developed. Among them, the most recently developed effective second moment of load path (ESMLP) approach demonstrates its potentials of conducting fatigue damage and life assessment accurately and efficiently. ESMLP can be used for fatigue analysis even without resorting to cycle counting because of its unique mathematical and physical properties, such as quadratic form in the kernel of the moment integral, rotationally invariant, and being proportional to damage. Developing a better parameter for frequency-domain analysis is the driving force behind the development of ESMLP as a new fatigue damage parameter.
Technical Paper

The Effect of Exhaust Emission Conditions and Coolant Temperature on the Composition of Exhaust Gas Recirculation Cooler Deposits

2023-04-11
2023-01-0438
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine.
Technical Paper

Effect of Split-Injection Strategies on Engine Performance and Emissions under Cold-Start Operation

2023-04-11
2023-01-0236
The recently concluded partnership for advancing combustion engines (PACE) was a US Department of Energy consortium involving multiple national laboratories focused on addressing key efficiency and emission barriers in light-duty engines. Generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior was a major pillar in this program. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon, and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster three-way catalyst light-off, and engine out emissions during that period. In this study, engine performance, emissions, and catalyst warmup potential were monitored while the engine was operated using a single direct injection (baseline case) as well as a two-way-equal-split direct injection strategy.
Technical Paper

Impact of Biodiesel, Renewable Diesel, 1-Octanol, Dibutoxymethane, n-Undecane, Hexyl hexanoate and 2-Nonanone with Infrastructure Plastics as Blends with Diesel

2022-03-29
2022-01-0487
In this study the volume and hardness were measured for thermoplastics and thermosetting resins with diesel containing up to 30% of the following blend stocks: biodiesel, renewable diesel, n-undecane, dibutoxymethane, 1-octanol, hexyl hexanoate, and 2-nonanone. Thermoplastics included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), polybutylene terephthalate (PBT), polypropylene (PP), high density polyethylene (HDPE), nylons, acetals, polyetherimide (PEI), polyetheretherketone (PEEK), a PET co-polymer, polyphthalamides (PPAs), polyarylamide (PARA) and ethylene tetrafluoroethylene (ETFE). Three thermosetting resins were also evaluated. The material specimens were exposed to the test fuels under ambient conditions for 16 weeks.
Journal Article

Evaluation of High-Temperature Martensitic Steels for Heavy-Duty Diesel Piston Applications

2022-03-29
2022-01-0599
Five different commercially available high-temperature martensitic steels were evaluated for use in a heavy-duty diesel engine piston application and compared to existing piston alloys 4140 and microalloyed steel 38MnSiVS5 (MAS). Finite element analyses (FEA) were performed to predict the temperature and stress distributions for severe engine operating conditions of interest, and thus aid in the selection of the candidate steels. Complementary material testing was conducted to evaluate the properties relevant to the material performance in a piston. The elevated temperature strength, strength evolution during thermal aging, and thermal property data were used as inputs into the FEA piston models. Additionally, the long-term oxidation performance was assessed relative to the predicted maximum operating temperature for each material using coupon samples in a controlled-atmosphere cyclic-oxidation test rig.
Journal Article

The Effect of Spark-Plug Heat Dispersal Range and Exhaust Valve Opening Timing on Cold-Start Emissions and Cycle-to-Cycle Variability

2021-09-21
2021-01-1180
The partnership for advancing combustion engines (PACE) is a US Department of Energy consortium involving multiple national laboratories and includes a goal of addressing key efficiency and emission barriers in light-duty engines fueled with a market-representative E10 gasoline. A major pillar of the initiative is the generation of detailed experimental data and modeling capabilities to understand and predict cold-start behavior. Cold-start, as defined by the time between first engine crank and three-way catalyst light-off, is responsible for a large percentage of NOx, unburned hydrocarbon and particulate matter emissions in light-duty engines. Minimizing emissions during cold-start is a trade-off between achieving faster light-off of the three-way catalyst and engine out emissions during that period.
Journal Article

Particle Matter Index and Fuel Wall-wetting Relations on Stochastic Pre-ignition

2021-09-21
2021-01-1163
This work explores the effect of the particle matter index (PMI) and aromatic content on fuel wall impingement associated with stochastic pre-ignition (SPI). Statically significant measurements of SPI rates are directly coupled with laser induced florescence (LIF) measurements of fuel dilution from spray-linear impingement. Literature suggests that PMI is could be correlated with the number of SPI events, but the root cause(s) of PMI and SPI are directly causational or are a predicator of SPI. Three fuels have been used in this study with 3 different PMI and two different aromatic contents. The fuels are direct injected at two different injection timings, an earlier injection timing which initially targets the piston crown, 310°CA bTDC, and a later injection timing that the liner, 220°CA bTDC start of injection timings (SOI) respectively. The earlier 310 SOI injection increases soot, whereas the later 220°CA SOI targets the liner and increases wall-wetting.
Journal Article

Fuel Effects on Advanced Compression Ignition Load Limits

2021-09-21
2021-01-1172
In order to maximize the efficiency of light-duty gasoline engines, the Co-Optimization of Fuels and Engines (Co-Optima) initiative from the U.S. Department of Energy is investigating multi-mode combustion strategies. Multi-mode combustion can be describe as using conventional spark-ignited combustion at high loads, and at the part-load operating conditions, various advanced compression ignition (ACI) strategies are being investigated to increase efficiency. Of particular interest to the Co-Optima initiative is the extent to which optimal fuel properties and compositions can enable higher efficiency ACI combustion over larger portions of the operating map. Extending the speed-load range of these ACI modes can enable greater part-load efficiency improvements for multi-mode combustion strategies.
Journal Article

Impact of Materials Properties on Higher-Temperature Engine Operation

2021-09-21
2021-01-1142
We examine the effects on materials temperatures and engine efficiency via simulations of engines operating at temperatures which exceed the thermal limits of today’s materials. Potential focus areas include high-speed, high-load operation (in the fuel-enrichment zone) as well as conditions of selective cooling at lower speeds and loads. We focus on a light-duty DISI and a heavy-duty CI engine using GT-Power. Temperature distributions within the head, block, piston, and valves were obtained from 3D FEA simulations coupled with 1D GT-Power representations of the engine’s gas flow and combustion regions.
Technical Paper

In Situ Laser Induced Florescence Measurements of Fuel Dilution from Low Load to Stochastic Pre Ignition Prone Conditions

2021-04-06
2021-01-0489
This work employs a novel laser induced fluorescence (LIF) diagnostic to measure fuel dilution in a running single cylinder research engine operated at stochastic pre ignition (SPI) and non-SPI prone conditions. Measurements of LIF based fuel dilution are quantified over a range of engine loads and fuel injection timings for two fuels. The in situ LIF measurements of fuel/lubricant interactions illustrate regions of increased fuel dilution from fuel-wall interactions and is believed to be a fundamental underpinning to generating top ring zone liquid conditions conducive to SPI. A novel level of dye doped in the fuel, between 50 to 500 ppm was used as the fluorescence source, at engine operating speed of 2000r/min from 5 to 18 bar of IMEPg injection timings was swept for two fuels of varying volatility.
Technical Paper

Evaluation of Strain Rate-Sensitive Constitutive Models for Simulation of Servo Stamping: Part 1 Theory

2020-10-01
2020-01-5073
Strain-rate sensitivity has been neglected in the simulation of the traditional stamping process because the strain rate typically does not significantly impact the forming behavior of sheet metals in such a quasi-static process, and traditional crank or link mechanical presses lack the flexibility of slide motion. However, the recent application of servo drive presses in stamping manifests improvement in formability and reduction of springback, besides increased productivity and energy savings. An accurate simulation of servo stamping entails constitutive models with strain-rate sensitivity. This study evaluated a few strain rate-sensitive models including the power-law model, the linear power-law model, the Johnson-Cook model, and the Cowper-Symonds model through the exercise of fitting these models to the experimental data of a deep draw quality (DDQ) steel.
Journal Article

Advanced Intra-Cycle Detection of Pre-Ignition Events through Phase-Space Transforms of Cylinder Pressure Data

2020-09-15
2020-01-2046
The widespread adoption of boosted, downsized SI engines has brought pre-ignition phenomena into greater focus, as the knock events resulting from pre-ignitions can cause significant hardware damage. Much attention has been given to understanding the causes of pre-ignition and identify lubricant or fuel properties and engine design and calibration considerations that impact its frequency. This helps to shift the pre-ignition limit to higher specific loads and allow further downsizing but does not fundamentally eliminate the problem. Real-time detection and mitigation of pre-ignition would thus be desirable to allow safe engine operation in pre-ignition-prone conditions. This study focuses on advancing the time of detection of pre-ignition in an engine cycle where it occurs.
Technical Paper

The Influence of the Operating Duty Cycles on the Composition of Exhaust Gas Recirculation Cooler Deposits of Industrial Diesel Engines

2020-04-14
2020-01-1164
Exhaust Gas Recirculation (EGR) coolers are commonly used in on-road and off-road diesel engines to reduce the recirculated gas temperature in order to reduce NOx emissions. One of the common performance behaviors for EGR coolers in use on diesel engines is a reduction of the heat exchanger effectiveness, mainly due to particulate matter (PM) deposition and condensation of hydrocarbons (HC) from the diesel exhaust on the inside walls of the EGR cooler. According to previous studies, typically, the effectiveness decreases rapidly initially, then asymptotically stabilizes over time. Prior work has postulated a deposit removal mechanism to explain this stabilization phenomenon. In the present study, five field aged EGR cooler samples that were used on construction machines for over 10,000 hours were analyzed in order to understand the deposit structure as well as the deposit composition after long duration use.
Technical Paper

Impact of Miller Cycle Strategies on Combustion Characteristics, Emissions and Efficiency in Heavy-Duty Diesel Engines

2020-04-14
2020-01-1127
This study experimentally investigates the impact of Miller cycle strategies on the combustion process, emissions, and thermal efficiency in heavy-duty diesel engines. The experiments were conducted at constant engine speed, load, and engine-out NOx (1160 rev/min, 1.76 MPa net IMEP, 4.5 g/kWh) on a single cylinder research engine equipped with a fully-flexible hydraulic valve train system. Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) timing strategies were compared to a conventional intake valve profile. While the decrease in effective compression ratio associated with the use of Miller valve profiles was symmetric around bottom dead center, the decrease in volumetric efficiency (VE) was not. EIVC profiles were more effective at reducing VE than LIVC profiles. Despite this difference, EIVC and LIVC profiles with comparable VE decrease resulted in similar changes in combustion and emissions characteristics.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Technical Paper

Detection of Polar Compounds Condensed on Particulate Matter Using Capillary Electrophoresis-Mass Spectrometry

2020-04-14
2020-01-0395
A new analytical method to aid in the understanding of the organic carbon (OC) phase of particulate matter (PM) from advanced compression ignition (ACI) operating modes, is presented. The presence of NO2 and unburned fuel aromatics in ACI emissions, and the low exhaust temperatures that result from this low temperature combustion strategy, provide the right conditions for the formation of carboxylic acids and nitroaromatic compounds. These polar compounds contribute to OC in the PM and are not typically measured using nonpolar solvent extraction methods such as the soluble organic fraction (SOF) method. The new extraction and detection method employs capillary electrophoresis with electrospray ionization mass spectrometry (CE-ESI MS) and was specifically developed to determine polar organic compounds in the ACI PM emissions. The new method identified both nitrophenols and aromatic carboxylic acids in the ACI PM.
Technical Paper

Minimization of Electric Heating of the Traction Induction Machine Rotor

2020-04-14
2020-01-0562
The article solves the problem of reducing electric power losses of the traction induction machine rotor to prevent its overheating in nominal and high-load modes. Electric losses of the rotor power are optimized by the stabilization of the main magnetic flow of the electric machine at a nominal level with the amplitude-frequency control in a wide range of speeds and increased loads. The quasi-independent excitation of the induction machine allows us to increase the rigidity of mechanical characteristics, decrease the rotor slip at nominal loads and overloads and significantly decrease electrical losses in the rotor as compared to other control methods. The article considers the technology of converting the power of individual phases into a single energy flow using a three-phase electric machine equivalent circuit and obtaining an energy model in the form of equations of instantaneous active and reactive power balance.
X