Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Innovative Additive Manufacturing Process for Successful Production of 7000 Series Aluminum Alloy Components Using Smart Optical Monitoring System

2020-04-14
2020-01-1300
Aircraft components are commonly produced with 7000 series aluminum alloys (AA) due to its weight, strength, and fatigue properties. Auto Industry is also choosing more and more aluminum component for weight reduction. Current additive manufacturing (AM) methods fall short of successfully producing 7000 series AA due to the reflective nature of the material along with elements with low vaporization temperature. Moreover, lacking in ideal thermal control, print inherently defective products with such issues as poor surface finish alloying element loss and porosity. All these defects contribute to reduction of mechanical strength. By monitoring plasma with spectroscopic sensors, multiple information such as line intensity, standard deviation, plasma temperature or electron density, and by using different signal processing algorithm, AM defects have been detected and classified.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Technical Paper

Mechanical Strength and Failure Mode of Flow Drill Screw Joints in Coach-Peel Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses and Processing Conditions

2018-04-03
2018-01-0116
The mechanical strength and failure mode of flow drill screw (FDS) joints in coach-peel specimens of aluminum 6082-T6 sheets of three different thicknesses of 2.5, 2.8 and 3.0 mm and three different processing conditions under quasi-static loading conditions are investigated by experiments. The experimental results indicate that the mechanical strength and failure mode of FDS joints in coach-peel specimens are affected by the specimen thickness, clearance hole and stripping. The maximum load of a coach-peel specimen with an FDS joint with clearance hole increases as the thickness increases. For each of the thickness groups of 2.5, 2.8 and 3.0 mm, the maximum load of a coach-peel specimen with an FDS joint without clearance hole is lower than that with clearance hole. For the thickness group of 2.8 mm, the maximum load of a coach-peel specimen with a stripped FDS joint with clearance hole is lower than those of non-stripped ones with and without clearance hole.
Journal Article

Lightweight Stiffening Ribs in Structural Plates

2017-03-28
2017-01-0268
The aim of this analysis was to model the effect of adding stiffening ribs in structural aluminum components by friction stir processing (FSP) Nano material into the aluminum matrix. These stiffening ribs could dampen, redirect, or otherwise alter the transmission of energy waves created from automotive, ballistic, or blast shocks to improve noise, vibration, and harshness (NVH) and structural integrity (reduced joint stress) response. Since the ribs are not created by geometry changes they can be space efficient and deflect blast / ballistic energy better than geometry ribbing, resulting in a lighter weight solution. The blast and ballistic performance of different FSP rib patterns in AL 5182 and AL 7075 were simulated and compared to the performance of an equivalent weight of RHA plate FSP helps to increase localized strength and stiffness of the base metal, while achieving light weighting of the base metal.
Journal Article

Stress Intensity Factor Solutions for Dissimilar Welds in Lap-Shear Specimens of Steel, Magnesium, Aluminum and Copper Sheets

2015-04-14
2015-01-1754
In this paper, the analytical stress intensity factor and J integral solutions for welds in lap-shear specimens of two dissimilar sheets based on the beam bending theory are first reviewed. The solutions are then presented in the normalized forms. Next, two-dimensional finite element analyses were selectively conducted to validate the analytical solutions based on the beam bending theory. The interface crack parameters, the stress intensity factor solutions, and the J integral solutions for welds in lap-shear specimens of different combinations of steel, aluminum, and magnesium, and the combination of aluminum and copper sheets of different thickness ratios are then presented for convenient fracture and fatigue analyses. The transition thickness ratios for critical crack locations for different combinations of dissimilar materials are then determined from the analytical solutions.
Journal Article

Development and Validation of an Analytical Seal Bead Design Model for Automotive Superplastic Forming

2010-04-12
2010-01-0979
With the increasing demand for fuel efficient vehicles, technologies like superplastic forming (SPF) are being developed and implemented to allow for the utilization of lightweight automotive sheet materials. While forming under superplastic conditions leads to increased formability in lightweight alloys, such as aluminum, the slower forming times required by the technology can limit the technology to low to mid production levels. One problem that can increase forming time is the reduction of forming pressure due to pressurizing (forming) gas leaks, during the forming cycle, at the die/sheet/blankholder interface. Traditionally, such leaks have been successfully addressed through the use of a seal bead. However, for advanced die technologies that result in reduced cycle times (such as hot draw mechanical performing, which combine aspects of mechanical preforming of the sheet metal followed by SPF), the use of seal beads can restrict the drawing of sheet material into the forming die.
Technical Paper

Effects of Surface Treatment (Lubricant) on Spot Friction Welded Joints Made of 6111-T4 Aluminum Sheets

2007-04-16
2007-01-1706
The effects of lubricant on lap shear strength of Spot Friction Welded (SFW) joints made of 6111-T4 alloys were studied. Taguchi L8 design of experiment methodology was used to determine the lubricant effects. The results showed that the lap shear strength increased by 9.9% when the lubricant was present at the top surface compared to that of the baseline (no lubricant) whereas the lap shear strength reduced by 10.2% and 10.9% when the lubricant was present in the middle and at the bottom surfaces compared to that of the baseline (no lubricant), respectively. The microstructure analysis showed a zigzag interface at the joint between the upper and the lower sheet metal for the baseline specimen, the specimens with the lubricant at the top and at the bottom. However, a straight line interface is exhibited at the joint between the upper and the lower sheet for the specimen with the lubricant in the middle. The weld nugget sizes of the lap shear tested specimens were measured.
Technical Paper

A Test Method for Quantifying Residual Stress Due to Heat Treatment in Metals

2006-04-03
2006-01-0319
Quantification of residual stresses is an important engineering problem impacting manufacturabilty and durability of metallic components. An area of particular concern is residual stresses that can develop during heat treatment of metallic components. Many heat treatments, especially in heat treatable cast aluminum alloys, involve a water-quenching step immediately after a solution-treatment cycle. This rapid water quench has the potential to induce high residual stresses in regions of the castings that experience large thermal gradients. These stresses may be partially relaxed during the aging portion of the heat treatment. The goal of this research was to develop a test sample and quench technique to quantify the stresses created by steep thermal gradients during rapid quenching of cast aluminum. The development and relaxation of residual stresses during the aging cycle was studied experimentally with the use of strain gauges.
Technical Paper

Microstructures and Failure Mechanisms of Spot Friction Welds in Lap-Shear Specimens of Aluminum 5754 Sheets

2005-04-11
2005-01-1256
Microstructures and failure mechanisms of spot friction welds (SFW) in aluminum 5754 lap-shear specimens were investigated. In order to study the effect of tool geometry on the joint strength of spot friction welds, a concave tool and a flat tool were used. In order to understand the effect of tool penetration depth on the joint strength, spot friction welds were prepared with two different penetration depths for each tool. The results indicated that the concave tool produced slightly higher joint strength than the flat tool. The joint strength did not change for the two depths for the flat tool whereas the joint strength slightly increases as the penetration depth increases for the concave tool. The experimental results show that the failure mechanism is necking and shearing for the spot friction welds made by both tools. The failure was initiated and fractured through the upper sheet under the shoulder indentation near the crack tip.
Technical Paper

Influence of Strain Rates on Springback of 2xxx Series Aluminum Alloys

2004-11-02
2004-01-3111
Forming of aluminum sheets in O-temper is a very common industrial process in the aircraft industry. However, the success of this process largely hinges on the ability to predict springback accurately. Aluminum sheets in T-temper exhibit approximately twenty percent variability in material properties and also the amount of springback is very large. This makes tool design for aluminum in T-temper an iterative and difficult to control process. Traditionally aluminum has been formed in the O-temper and then heat-treated to T-temper, as recourse to reduce springback. This research is aimed at developing a predictive finite element technique for springback, using experimental validation. A parametric study was conducted to determine the influence of geometric parameters and tempers on springback. The study characterizes springback of aluminum in different tempers and investigates the effect of forming strain-rates on springback.
Technical Paper

Fatigue Behavior of Semi-Solid Formed A357-T6 Aluminum

2001-03-05
2001-01-0413
The fundamental relationship between semi-solid processing and microstructure and their effect on the flow characteristics of semi-solid metals have been studied for several years. However, how the process related microstructure influences fatigue properties has not been given the same attention. This study examines the influence of process-related microstructure on the fatigue properties of semi-solid formed A357 alloys. High-solid-fraction (62% solid) and low-solid-fraction (31% and 36% solid) semi-solid formed A357 was tested in axial fatigue with a stress ratio (R) equal to -1. The high solid fraction (HSF) material had better fatigue properties than the low solid fraction (LSF) material. This is attributed to the fatigue crack initiation mechanisms, as related to the fatigue crack initiation features and the strengths of the materials.
Technical Paper

The Effect of Copper Level and Solidification Rate on the Aging Behavior of a 319-Type Cast Aluminum Alloy

2000-03-06
2000-01-0759
Compositional and microstructural variations in a casting can often result in rather significant variations in the response to a given aging treatment, leading to location dependent mechanical properties. The objective of this study is to determine the effect of copper content and solidification rate on the aging behavior of a type 319 cast aluminum alloy. The nominal composition of the alloy is Al-7% Si-3.5% Cu-0.25% Mg, however, typical secondary 319 aluminum specifications allow copper levels to vary from 3-4%. Solidification rates throughout a casting can vary greatly due to, among other factors, differences in section size. To determine the effect of copper level and solidification rate on the aging response, aging curves were experimentally developed for this alloy. Three different copper levels (3, 3.5, 4%) and two solidification rates were used for this study. Aging temperatures ranged from 150-290°C with nine aging times at each temperature.
Technical Paper

Strength of Stiffened Panels with Multiple Site Damage

1999-04-20
1999-01-1575
Multiple site damage (MSD) on aging aircraft accumulates from fatigue loading over a period of time. For ductile materials such as 2024-T3 aluminum, MSD may lower the strength below that which is predicted by conventional fracture mechanics. An analytical model referred to as the linkup (or plastic zone touch) model has previously been used to describe this phenomenon. However, the linkup model has been shown to produce inaccurate results for many configurations. This paper describes several modifications of the linkup model developed from empirical analyses. These modified linkup models have been shown to produce accurate results over a wide range of configurations for both unstiffened and stiffened flat 2024-T3 panels with MSD at open holes. These modified models are easy to use and give quick and accurate results over a large range of parameters.
Technical Paper

Life-Cycle Assessment of a Powertrain Structural Component: Diecast Aluminum vs. Hypothetical Thixomolded® Magnesium

1999-03-01
1999-01-0016
This study is a life-cycle assessment (LCA) comparing two types of a powertrain structural component: one made of diecast primary aluminum and another hypothetical part made of semi-solid injection molded primary magnesium (Thixomolded®). The LCA provides an indication of the potential environmental burdens throughout the life-cycles of both parts, ranging from raw material acquisition to product end-of-life. Preliminary results show high sensitivity to selection of primary vs. secondary metals, and to the SF6 emission factor used in the model. Opportunities exist for reducing energy consumption using secondary instead of primary metals for both parts, although the use of such is influenced by market supply and demand
Technical Paper

Bolt-Load Retention Behavior of Die-Cast AZ91D and AE42 Magnesium

1998-02-23
980090
The effect of temperature and preload on the bolt load retention (BLR) behavior of AZ91D and AE42 magnesium die castings was investigated. The results were compared to those of 380 aluminum die castings. Test temperatures from 125 to 175°C and preloads from 7 to 28 kN were investigated. The loss of preload for AZ91D was more sensitive to temperature than that observed for AE42, especially at low preloads. In general, retained bolt-load was lowest in AZ91D. All test assemblies were preloaded at room temperature and load levels increased when the assemblies reached test temperature. The load-increase was dependent on the preload level, test temperature, alloy, and results from thermal expansion mismatch between the steel bolt and the magnesium alloy components, mitigated by the onset of primary creep. Thermal exposure (aging) of AZ91D at 150°C improved BLR behavior.
Technical Paper

Life Cycle Assessment of a Transmission Case: Magnesium vs. Aluminum

1998-02-23
980470
This paper describes a Life Cycle Assessment (LCA) done to evaluate the relative environmental performance of magnesium (Mg) and aluminum (Al) automatic transmission cases. Magnesium is considered a lighter weight substitute for aluminum in this application. Light weighting of vehicles increases fuel economy and is an important vehicle design metric. The objective of this LCA is to quantify energy and other environmental trade-offs associated with each alternative for material production, manufacturing, use, and end-of-life management stages. Key features of the inventory modeling and the data collection and analysis methods are included in this paper along with life cycle inventory profiles of aluminum and magnesium alternatives. The life cycle inventory (LCI) was interpreted using a set of environmental metrics and areas needing further research were identified. A qualitative cost assessment was done in conjunction with this LCA to highlight potential cost drivers.
X