Refine Your Search

null

Search Results

Viewing 1 to 10 of 10
Technical Paper

Predicting the Effects of Muscle Activation on Knee, Thigh, and Hip Injuries in Frontal Crashes Using a Finite-Element Model with Muscle Forces from Subject Testing and Musculoskeletal Modeling

2009-11-02
2009-22-0011
In a previous study, the authors reported on the development of a finite-element model of the midsize male pelvis and lower extremities with lower-extremity musculature that was validated using PMHS knee-impact response data. Knee-impact simulations with this model were performed using forces from four muscles in the lower extremities associated with two-foot bracing reported in the literature to provide preliminary estimates of the effects of lower-extremity muscle activation on knee-thigh-hip injury potential in frontal impacts. The current study addresses a major limitation of these preliminary simulations by using the AnyBody three-dimensional musculoskeletal model to estimate muscle forces produced in 35 muscles in each lower extremity during emergency one-foot braking.
Technical Paper

Development of a Finite Element Model to Study the Effects of Muscle Forces on Knee-Thigh-Hip Injuries in Frontal Crashes

2008-11-03
2008-22-0018
A finite element (FE) model with knee-thigh-hip (KTH) and lower-extremity muscles has been developed to study the potential effects of muscle tension on KTH injuries due to knee bolster loadings in frontal crashes. This model was created by remeshing the MADYMO human lower-extremity FE model to account for regional differences in cortical bone thickness, trabecular bone, cortical bone with directionally dependent mechanical properties and Tsai-Wu failure criteria, and articular cartilage. The model includes 35 Hill-type muscles in each lower extremity with masses based on muscle volume. The skeletal response of the model was validated by simulating biomechanical tests without muscle tension, including cadaver skeletal segment impact tests documented in the literature as well as recent tests of seated whole cadavers that were impacted using knee-loading conditions similar to those produced in FMVSS 208 testing.
Technical Paper

Blast Protection Design of a Military Vehicle System Using a Magic Cube Approach

2008-04-14
2008-01-0773
A Magic Cube (MQ) approach for crashworthiness design has been proposed in previous research [1]. The purpose of this paper is to extend the MQ approach to the blast protection design of a military vehicle system. By applying the Space Decompositions and Target Cascading processes of the MQ approach, three subsystem design problems are identified to systematize the blast protection design problem of a military vehicle. These three subsystems, including seat structure, restraint system, and under-body armor structure, are most influential to the overall blast-protective design target. The effects of a driver seat subsystem design and restraint-system subsystem design on system blast protection are investigated, along with a focused study on the under-body blast-protective structure design problem.
Technical Paper

Improved Positioning Procedures for 6YO and 10YO ATDs Based on Child Occupant Postures

2006-11-06
2006-22-0014
The outcomes of crash tests can be influenced by the initial posture and position of the anthropomorphic test devices (ATDs) used to represent human occupants. In previous work, positioning procedures for ATDs representing adult drivers and rear-seat passengers have been developed through analysis of posture data from human volunteers. The present study applied the same methodology to the development of positioning procedures for ATDs representing six-year-old and ten-year-old children sitting on vehicle seats and belt-positioning boosters. Data from a recent study of 62 children with body mass from 18 to 45 kg were analyzed to quantify hip and head locations and pelvis and head angles for both sitter-selected and standardized postures. In the present study, the 6YO and 10YO Hybrid-III ATDs were installed using FMVSS 213 procedures in six test conditions used previously with children.
Technical Paper

A Magic Cube Approach for Crashworthiness Design

2006-04-03
2006-01-0671
Vehicle structure crashworthiness design is one of the most challenging problems in product development and it has been studied for decades. Challenges still remain, which include developing a reliable and systematic approach for general crashworthiness design problems, which can be used to design an optimum vehicle structure in terms of topology, shape, and size, and for both structural layout and material layout. In this paper, an advanced and systematic approach is presented, which is called Magic Cube (MQ) approach for crashworthiness design. The proposed MQ approach consists of three major dimensions: Decomposition, Design Methodology, and General Considerations. The Decomposition dimension is related to the major approaches developed for the crashworthiness design problem, which has three layers: Time (Process) Decomposition, Space Decomposition, and Scale Decomposition.
Technical Paper

First Order Analysis for Automotive Body Structure Design-Part 2: Joint Analysis Considering Nonlinear Behavior

2004-03-08
2004-01-1659
We have developed new CAE tools in the concept design process based on First Order Analysis (FOA). Joints are often modeled by rotational spring elements. However, it is very difficult to obtain good accuracy. We think that one of the reasons is the influence of the nonlinear behavior due to local elastic buckling. Automotive body structures have the possibility of causing local buckling since they are constructed by thin walled cross sections. In this paper we focus on this behavior. First of all, we present the concept of joint analysis in FOA, using global-local analysis. After that, we research nonlinear behavior in order to construct an accurate joint reduced model. (1) The influence of local buckling is shown using uniform beams. (2) Stiffness decrease of joints due to a local buckling is shown. (3) The way of treating joint modeling considering nonlinear behavior is proposed.
Technical Paper

Analysis of FEM Results Based upon FOA

2004-03-08
2004-01-1729
In FOA (First Order Analysis) any vehicle body structure might be interpreted as a collective simple structure that can be decomposed into 3 fundamental structure types. The first structure is the “BEAM”, whose cross sectional properties as well as its material dominates the mechanical behavior, the second is the “PANEL (shear panel, plate, and shell)”, whose mechanical behavior can be varied by changing its geometrical properties in the thickness direction, i.e. adding beads or flanges. The third structure is the “JOINT”, which connects the proceeding structures, and transfer complex three-dimensional loads with three-dimensional deformation. In the present work, we shall propose a methodology to identify a portion of an arbitrary FE model of an automotive body structure, with a “BEAM” structure in the FOA approach. In the latter chapter of this paper, cross section loads will be related with cross sectional properties in the aspect of the element strain energy concept.
Technical Paper

An Improved Seating Accommodation Model with Application to Different User Populations

1998-02-23
980651
A new approach to driver seat-position modeling is presented. The equations of the Seating Accommodation Model (SAM) separately predict parameters of the distributions of male and female fore/aft seat position in a given vehicle. These distributions are used together to predict specific percentiles of the combined male-and-female seat-position distribution. The effects of vehicle parameters-seat height, steering-wheel-to-accelerator pedal distance, seat-cushion angle, and transmission type-are reflected in the prediction of mean seat position. The mean and standard deviation of driver population stature are included in the prediction for the mean and standard deviation of the seat-position distribution, respectively. SAM represents a new, more flexible approach to predicting fore/aft seat-position distributions for any driver population in passenger vehicles. Model performance is good, even at percentiles in the tails of the distribution.
Technical Paper

Development and Application of a Shape-Topology Optimization System Using a Homogenization Method

1994-03-01
940892
The shape and topology optimization method using a homogenization method is a powerful design tool because it can treat topological changes of a design domain. This method was originally developed in 1988 [1] and have been studied by many researchers. However, their scope of application in real vehicle design works has been limited where a design domain and boundary conditions are very complicated. The authors have developed a powerful optimization system by adopting a general purpose finite element analysis code. A method for treating vibration problems is also discussed. A new objective function corresponding to a multi-eigenvalue optimization problem is suggested. An improved optimization algorithm is then applied to solve the problem. Applications of the optimization system to design the body and the parts of a solar car are presented.
Technical Paper

Biomechanical Properties of the Human Neck in Lateral Flexion

1975-02-01
751156
Properties of the human neck which may influence a person's susceptibility to “whiplash” injury during lateral impact have been studied in 96 normal subjects. Subjects were chosen on the basis of age, sex, and stature and data were grouped into six primary categories based on sex (F, M) and age (18-24, 35-44, 62-74). The data include: measures of head, neck and body anthropometry in standing and simulated automotive seating positions, three-dimensional range of motion of the head and neck, head/neck response to low-level acceleration, and both stretch reflex time and voluntary isometric muscle force in the lateral direction. Reflex times are found to vary from about 30 to 70 ms with young and middle aged persons having faster times than older persons, and females having faster times than males. Muscle strength decreases with age and males are, on the average, stronger than females.
X