Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Optical Diagnostic Study on Improving Performance and Emission in Heavy-Duty Diesel Engines Using a Wave-Shaped Piston Bowl Geometry and Post Injection Strategies

2023-08-28
2023-24-0048
This study explores the potential benefits of combining a wave-shaped piston geometry with post injection strategy in diesel engines. The wave piston design features evenly spaced protrusions around the piston bowl, which improve fuel-air mixing and combustion efficiency. The 'waves' direct the flames towards the bowl center, recirculating them and utilizing the momentum in the flame jets for more complete combustion. Post injection strategy, which involves a short injection after the main injection, is commonly used to reduce emissions and improve fuel efficiency. By combining post injections with the wave piston design, additional fuel injection can increase the momentum utilized by the flame jets, potentially further improving combustion efficiency. To understand the effects and potential of the wave piston design with post injection strategy, a single-cylinder heavy-duty compression-ignition optical engine with a quartz piston is used.
Technical Paper

An Optical Study of the Effects of Diesel-like Fuels with Different Densities on a Heavy-duty CI Engine with a Wave-shaped Piston Bowl Geometry

2023-04-11
2023-01-0261
The novel wave-shaped bowl piston geometry design with protrusions has been proved in previous studies to enhance late-cycle mixing and therefore significantly reduce soot emissions and increase engine thermodynamic efficiency. The wave-shaped piston is characterized by the introduction of evenly spaced protrusions around the inner wall of the bowl, with a matching number with the number of injection holes, i.e., flames. The interactions between adjacent flames strongly affect the in-cylinder flow and the wave shape is designed to guide the near-wall flow. The flow re-circulation produces a radial mixing zone (RMZ) that extends towards the center of the piston bowl, where unused air is available for oxidation promotion. The waves enhance the flow re-circulation and thus increase the mixing intensity of the RMZ.
Journal Article

Tanker Truck Rollover Avoidance Using Learning Reference Governor

2021-04-06
2021-01-0256
Tanker trucks are commonly used for transporting liquid material including chemical and petroleum products. On the one hand, tanker trucks are susceptible to rollover accidents due to the high center of gravity when they are loaded and due to the liquid sloshing effects when the tank is partially filled. On the other hand, tanker truck rollover accidents are among the most dangerous vehicle crashes, frequently resulting in serious to fatal driver injuries and significant property damage, because the liquid cargo is often hazardous and flammable. Therefore, effective schemes for tanker truck rollover avoidance are highly desirable and can bring a considerable amount of societal benefit. Yet, the development of such schemes is challenging, as tanker trucks can operate in various environments and be affected by manufacturing variability, aging, degradation, etc. This paper considers the use of Learning Reference Governor (LRG) for tanker truck rollover avoidance.
Technical Paper

Impact of Miller Cycle Strategies on Combustion Characteristics, Emissions and Efficiency in Heavy-Duty Diesel Engines

2020-04-14
2020-01-1127
This study experimentally investigates the impact of Miller cycle strategies on the combustion process, emissions, and thermal efficiency in heavy-duty diesel engines. The experiments were conducted at constant engine speed, load, and engine-out NOx (1160 rev/min, 1.76 MPa net IMEP, 4.5 g/kWh) on a single cylinder research engine equipped with a fully-flexible hydraulic valve train system. Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) timing strategies were compared to a conventional intake valve profile. While the decrease in effective compression ratio associated with the use of Miller valve profiles was symmetric around bottom dead center, the decrease in volumetric efficiency (VE) was not. EIVC profiles were more effective at reducing VE than LIVC profiles. Despite this difference, EIVC and LIVC profiles with comparable VE decrease resulted in similar changes in combustion and emissions characteristics.
Technical Paper

Modeling of Engine Aftertreatment System Cooling for Hybrid Vehicles

2019-04-02
2019-01-0989
Exhaust aftertreatment systems are essential components in modern powertrains, needed to reach the low legislated levels of NOx and soot emissions. A well designed diesel engine exhaust aftertreatment system can have NOx conversion rates above 95%. However, to achieve high conversion the aftertreatment system must be warm. Because of this, large parts of the total NOx emissions come from cold starts where the engine has been turned off long enough for the aftertreatment system to cool down and loose its capacity to reduce NOx. It is therefore important to understand how the aftertreatment cools down when the engine in turned off. Experimental data for a catalyst cool-down process is presented and analyzed. The analysis shows that it is important to capture the spatial distribution of temperatures both in axial and radial directions. The data and analysis are used to design a catalyst thermal model that can be used for model based catalyst temperature monitoring and control.
Journal Article

Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System

2019-04-02
2019-01-1259
One promising method for reducing fuel consumption and emissions, particularly in heavy duty trucks, is platooning. As the distance between vehicles decreases, the following vehicles will experience less aerodynamic drag on the front of the vehicle. However, reducing the velocity of the air contacting the front of the vehicle could have adverse effects on the temperature of the engine. To compensate for this effect, the energy consumption of the engine cooling system might increase, ultimately limiting the overall improvements obtained with platooning. Understanding the coupling between drag reduction and engine cooling load requirement is key for successfully implementing platooning strategies. Additionally, in a Connected and Automated Vehicle (CAV) environment, where information of the future engine load becomes available, the operation of the cooling system can be optimized in order to achieve the maximum fuel consumption reduction.
Technical Paper

Infrared Borescopic Analysis of Ignition and Combustion Variability in a Heavy-Duty Natural-Gas Engine

2018-04-03
2018-01-0632
Optical imaging diagnostics of combustion are most often performed in the visible spectral band, in part because camera technology is most mature in this region, but operating in the infrared (IR) provides a number of benefits. These benefits include access to emission lines of relevant chemical species (e.g. water, carbon dioxide, and carbon monoxide) and obviation of image intensifiers (avoiding reduced spatial resolution and increased cost). High-speed IR in-cylinder imaging and image processing were used to investigate the relationships between infrared images, quantitative image-derived metrics (e.g. location of the flame centroid), and measurements made with in-cylinder pressure transducers (e.g. coefficient of variation of mean effective pressure). A 9.7-liter, inline-six, natural-gas-fueled engine was modified to enable exhaust-gas recirculation (EGR) and provide borescopic optical access to one cylinder for two high-speed infrared cameras.
Technical Paper

Infrared Borescopic Evaluation of High-Energy and Long-Duration Ignition Systems for Lean/Dilute Combustion in Heavy-Duty Natural-Gas Engines

2018-04-03
2018-01-1149
Natural gas (NG) is attractive for heavy-duty (HD) engines for reasons of cost stability, emissions, and fuel security. NG cannot be reliably compression-ignited, but conventional gasoline ignition systems are not optimized for NG and are challenged to ignite mixtures that are lean or diluted with exhaust-gas recirculation (EGR). NG ignition is particularly challenging in large-bore engines, where completing combustion in the available time is more difficult. Using two high-speed infrared (IR) cameras with borescopic access to one cylinder of an HD NG engine, the effect of ignition system on the early flame-kernel development and cycle-to-cycle variability (CCV) was investigated. Imaging in the IR yielded strong signals from water emission lines, which located the flame front and burned-gas regions and obviated image intensifiers. A 9.7-liter, six-cylinder engine was modified to enable exhaust-gas recirculation and to provide optical access.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Journal Article

Evaluation of the Seat Index Point Tool for Military Seats

2016-04-05
2016-01-0309
This study evaluated the ISO 5353 Seat Index Point Tool (SIPT) as an alternative to the SAE J826 H-point manikin for measuring military seats. A tool was fabricated based on the ISO specification and a custom back-angle measurement probe was designed and fitted to the SIPT. Comparisons between the two tools in a wide range of seating conditions showed that the mean SIP location was 5 mm aft of the H-point, with a standard deviation of 7.8 mm. Vertical location was not significantly different between the two tools (mean - 0.7 mm, sd 4.0 mm). A high correlation (r=0.9) was observed between the back angle measurements from the two tools. The SIPT was slightly more repeatable across installations and installers than the J826 manikin, with most of the discrepancy arising from situations with flat seat cushion angles and either unusually upright or reclined back angles that caused the J826 manikin to be unstable.
Technical Paper

Heavy Truck Crash Analysis and Countermeasures to Improve Occupant Safety

2015-09-29
2015-01-2868
This paper examines truck driver injury and loss of life in truck crashes related to cab crashworthiness. The paper provides analysis of truck driver fatality and injury in crashes to provide a better understanding of how injury occurs and industry initiatives focused on reducing the number of truck occupant fatalities and the severity of injuries. The commercial vehicle focus is on truck-tractors and single unit trucks in the Class 7 and 8 weight range. The analysis used UMTRI's Trucks Involved in Fatal Accidents (TIFA) survey file and NHTSA's General Estimates System (GES) file for categorical analysis and the Large Truck Crash Causation Study (LTCCS) for a supplemental clinical review of cab performance in frontal and rollover crash types. The paper includes analysis of crashes producing truck driver fatalities or injuries, a review of regulatory development and industry safety initiatives including barriers to implementation.
Technical Paper

A Study on Effects of Low Viscosity Engine Oil and MoDTC on Piston Friction Losses in a DI Diesel Engine

2015-09-01
2015-01-2044
The reduction of friction losses is a subject of central importance in a diesel engine. The piston frictions of low viscosity engine oil and molybdenum dialkyl dithiocarbamate (MoDTC) have been measured by floating liner method. It was found that the low viscosity engine oil lower than 5W-30 is not effective against the reduction of friction mean effective pressure (FMEP) related to the fuel consumption. MoDTC showed a good performance against the reduction of FMEP. In the friction measurement points, the reduction ratio of 10W-30 with MoDTC to 10W-30 was greater than that of 5W-30 to 10W-30.
Technical Paper

Heavy Duty Emission Control System Analysis and Optimization for Future Demands

2015-04-14
2015-01-0997
This paper will review several different emission control systems for heavy duty diesel (HDD) applications aimed at future legislations. The focus will be on the (DOC+CSF+SCR+ASC) configuration. As of today, various SCR technologies are used on commercial vehicles around the globe. Moving beyond EuroVI/US10 emission levels, both fuel consumption savings and higher catalyst system efficiency are required. Therefore, significant system optimization has to be considered. Examples of this include: catalyst development, optimized thermal management, advanced urea dosing calibrations, and optimized SCR inlet NO:NO2 ratios. The aim of this paper is to provide a thorough system screening using a range of advanced SCR technologies, where the pros and cons from a system perspective will be discussed. Further optimization of selected systems will also be reviewed. The results suggest that current legislation requirements can be met for all SCR catalysts under investigation.
Journal Article

Experimental Investigation of Heat Transfer Rate and Pressure Drop through Angled Compact Heat Exchangers Relative to the Incoming Airflow

2014-09-30
2014-01-2337
This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger.
Technical Paper

Modeling of Closed Fans using CFD and Steady State Assumption of Fluid Flow

2014-09-30
2014-01-2344
Computational Fluid Dynamics (CFD) is today an important tool in the design process of fuel and energy efficient vehicles. Under-hood management is one of the fields where CFD has proven itself to be useful for cost-efficient development of products. Multiple Reference Frame (MRF) method is the most common used tool in the industry for modeling rotating parts. In previous papers, the modeling strategy with MRF has been documented for open fans and showed high capability to predict fan performance. One of the open points of this proposed method has been its applicability to closed fans (ring fans), as industry experience and discussions has indicated previous conclusions of open fans and MRF modeling may not apply across ranges of fan designs. This paper investigates the MRF method for a closed fan with U-shroud and analyzes several aspect of the modeling strategy.
Technical Paper

Energy and Entropy in Airbag Deployment: The Effect on an Out-Of-Position Occupant

1999-03-01
1999-01-1071
Deployment of an airbag or charging of a tank by an inflator-canister system is a highly dynamic process. Quantification of energy storage, energy flux, work done, flow rates, thermodynamic properties, and energy conservation are essential to describe the deployment process. The concepts of available work and entropy production are presented as useful parameters when evaluating airbag aggressivity from tank test results for different types of inflators. This paper presents a computational methodology to simulate a pyro- and a hybrid-inflator-canister-airbag system to predict the force pattern that could occur on an out-of-position occupant when the airbag deploys. Comparisons with experimental data have been made in all cases where data were available. These include driver-, passenger-, and side-airbag designs.
Technical Paper

Modal Content of Heavy-Duty Diesel Engine Block Vibration

1997-05-20
971948
High-fidelity overall vehicle simulations require efficient computational routines for the various vehicle subsystems. Typically, these simulations blend theoretical dynamic system models with empirical results to produce computer models which execute efficiently. Provided that the internal combustion engine is a dominant source of vehicle vibration, knowledge of its dynamic characteristics throughout its operating envelope is essential to effectively predict vehicle response. The present experimental study was undertaken to determine the rigid body modal content of engine block vibration of a modern, heavy-duty Diesel engine. Experiments were conducted on an in-line six-cylinder Diesel engine (nominally rated at 470 BHP) which is used in both commercial Class-VIII trucks, and on/off-road military applications. The engine was mounted on multi-axis force transducers in a dynamometer test cell in the standard three-point configuration.
X