Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Powerplant NVH Benchmarking

2011-05-17
2011-01-1500
Getting Powerplant NVH Benchmarking right is a key first step in knowing where your design stands relative to its competition and what needs to be improved in order to achieve or maintain NVH leadership. It is through benchmarking that you can define industry trends, who gets it right, who doesn't, and why. A good benchmarking database also lets you estimate the improvements or deterioration due to engine architecture changes or design features. This paper describes a methodology used for selecting, measuring, and comparing powerplant NVH attributes.
Technical Paper

NVH Design and Development of the Duratec35 Engine from Ford Motor Company

2007-05-15
2007-01-2414
Ford Motor Company has developed a new 3.5L V6 engine. The engine, called the Duratec35, represents a new architecture for Ford Motor Co. that will eventually power one in five Ford vehicles. The goals of the engine design were high output, fuel efficient, low emissions, and excellent NVH. This paper will describe the NVH process for the development of the engine, the NVH features included in the design, and the final results relative to the benchmarks.
Technical Paper

Eliminating Piston Slap through a Design for Robustness CAE Approach

2003-05-05
2003-01-1728
Piston slap is a problem that plagues many engines. One of the most difficult aspects of designing to eliminate piston slap is that slight differences in operating conditions and in part geometries from build to build can create large differences in the magnitude of piston slap. In this paper we will describe a design for robustness CAE approach to eliminating piston slap. This approach considers the variations of the significant control factors in the design, e.g. piston pin offset, piston skirt design, etc. as well as the variation in the noise factors the system is subjected to, e.g. assembly clearance, skirt collapse, peak cylinder pressure, cylinder pressure rise rate, and location of peak cylinder pressure. Using analytical knowledge about how these various factors impact the generation of piston slap, a piston design for low levels of piston slap can be determined that is robust to the various noise factors.
X