Refine Your Search

Topic

Search Results

Technical Paper

A Two-Layer Soot Model for Hydrocarbon Fuel Combustion

2020-04-14
2020-01-0243
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated.
Technical Paper

EV Penetration Impacts on Environmental Emissions and Operational Costs of Power Distribution Systems

2020-04-14
2020-01-0973
This research assesses the integration of different levels of electric vehicles (EVs) in the distribution system and observes its impacts on environmental emissions and power system operational costs. EVs can contribute to reducing the environmental emission from two different aspects. First, by replacing the traditional combustion engine cars with EVs for providing clean and environment friendly transportation and second, by integrating EVs in the distribution system through the V2G program, by providing power to the utility during peak hours and reducing the emission created by hydrocarbon dependent generators. The PG&E 69-bus distribution system (DS) is used to simulate the integration of EVs and to perform energy management to assess the operational costs and emissions. The uncertainty of driving patterns of EVs are considered in this research to get more accurate results.
Technical Paper

Alternative Fuel Property Correlations to the Honda Particulate Matter Index (PMI)

2016-10-17
2016-01-2250
The Honda Particulate Matter Index (PMI) is a very helpful tool which provides an indication of a fuel’s sooting tendency. Currently, the index is being used by various laboratories and vehicle OEMs as a metric to understand a fuels impact on automotive engine sooting, in preparation for new global emissions regulations. The calculation of the index involves generating detailed hydrocarbon analysis (hydrocarbon molecular speciation) using gas chromatography laboratory equipment and the PMI calculation requires the exact list of compounds and correct naming conventions to work properly. The analytical methodology can be cumbersome, when the gas chromatography methodology has to be adjusted for new compounds that are not in the method, or if the compounds are not matching the list for quantification. Also, the method itself is relatively expensive, and not easily transferrable between labs.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 2

2016-04-05
2016-01-0186
Exhaust gas recirculation (EGR) coolers are used on diesel engines to reduce peak in-cylinder flame temperatures, leading to less NOx formation during the combustion process. There is an ongoing concern with soot and hydrocarbon fouling inside the cold surface of the cooler. The fouling layer reduces the heat transfer efficiency and causes pressure drop to increase across the cooler. A number of experimental studies have demonstrated that the fouling layer tends to asymptotically approach a critical height, after which the layer growth ceases. One potential explanation for this behavior is the removal mechanism derived by the shear force applied on the soot and hydrocarbon deposit surface. As the deposit layer thickens, shear force applied on the fouling surface increases due to the flow velocity growth. When a critical shear force is applied, deposit particles start to get removed.
Journal Article

Rapidly Pulsed Reductants in Diesel NOx Reduction by Lean NOx Traps: Effects of Mixing Uniformity and Reductant Type

2016-04-05
2016-01-0956
Lean NOx Traps (LNTs) are one type of lean NOx reduction technology typically used in smaller diesel passenger cars where urea-based Selective Catalytic Reduction (SCR) systems may be difficult to package . However, the performance of lean NOx traps (LNT) at temperatures above 400 C needs to be improved. The use of Rapidly Pulsed Reductants (RPR) is a process in which hydrocarbons are injected in rapid pulses ahead of a LNT in order to expand its operating window to higher temperatures and space velocities. This approach has also been called Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) by Toyota. There is a vast parameter space which could be explored to maximize RPR performance and reduce the fuel penalty associated with injecting hydrocarbons. In this study, the mixing uniformity of the injected pulses, the type of reductant, and the concentration of pulsed reductant in the main flow were investigated.
Technical Paper

Experimental Study of Post Injection Scheduling for Soot Reduction in a Light-Duty Turbodiesel Engine

2016-04-05
2016-01-0726
This experimental study involves optimization of the scheduling of diesel post injections to reduce soot emissions from a light-duty diesel engine. Previous work has shown that certain post injection schedules can reduce engine-out soot emissions when compared to conventional injection schedules for the same engine load. The purpose of this study is to investigate the impact of post injection scheduling for a range of engine conditions on a light duty multicylinder turbodiesel engine (1.9L GM ZDTH). For each engine operating condition, a test grid was developed so that only two variables (post injection duration and the commanded dwell time between main injection and post injection) were varied, with all other conditions held constant, in order to isolate the effects of the post injection schedule. Results have identified two distinct regimes of post injection schedules that reduce soot emissions.
Journal Article

Aspects of HC-SCR Catalyst Durability for Lean-Burn Engine Exhaust Aftertreatment

2010-10-25
2010-01-2160
Unique silver/alumina (Ag-Al₂O₃) catalysts developed using high-throughput discovery techniques in collaboration with BASF Corporation were investigated at General Motors Corporation under simulated lean-burn engine exhaust feed conditions for the selective catalytic reduction of NOx using hydrocarbons (HC-SCR). Hydrocarbon mixtures were used as the reductant to model the multi-component nature of diesel fuel and gasoline. Previous work has shown promising HC-SCR results in both laboratory reactor and engine dynamometer testing. This report investigates several aspects of HC-SCR catalyst durability, including thermal durability, sulfur tolerance, and hydrocarbon deactivation.
Technical Paper

Hydrocarbon Deactivation of a Hydrocarbon SCR Catalyst

2009-11-02
2009-01-2779
At the current state of diesel engine technology, all diesel engines require some sort of NOx control device to comply with Tier II Bin 5 light-duty or 2010 heavy-duty NOx emission standards. Selective Catalytic Reduction of NOx with hydrocarbons (HC-SCR) to reduce NOx from diesel exhaust emissions is an attractive technology for lean NOx control, especially when diesel fuel is used as the reductant. However, it has been reported that when diesel fuel is used as the reductant catalyst deactivation occurred. Even though this kind of deactivation is reversible at high enough temperatures, it is a deficiency that needs to be overcome for the successful implementation of the technology. We studied the HC-SCR catalyst deactivation using diesel fuel as the reductant. The variables investigated included catalyst temperature, HC:NOx ratio, NOx concentration, and space velocity. The results showed that one single parameter can be used to measure the catalyst deactivation: the HC-SCR activity.
Technical Paper

Impacts of Reductants on Hydrocarbon Deactivation of a Hydrocarbon SCR Catalyst

2009-11-02
2009-01-2781
To comply with Tier II Bin 5 light-duty or 2010 heavy-duty NOx emission standards, all diesel engines require some sort of NOx control device. Selective Catalytic Reduction of NOx with hydrocarbons (HC-SCR) to reduce NOx from diesel exhaust emissions is an attractive technology for lean NOx control, especially when diesel fuel is used as the reductant. However, it has been reported that when diesel fuel is used as the reductant catalyst deactivation occurred (1). In a companion paper, we demonstrated that the HC-deactivation is caused by the mismatch of the adsorption and desorption processes of either the reactants or the products of a normal SCR reaction (2). In this paper, we probe the nature of the catalyst deactivation with various reductants. Both hydrocarbons and oxygenates were used as the reductants. The deactivation or the mismatch in adsorption and desorption rates is molecular size or chain length dependent.
Technical Paper

HC-SCR Catalyst Performance in Reducing NOx Emissions from a Diesel Engine Running Heavy Duty Transient Test Cycles with Diesel Fuel and Ethanol as the Reductants

2009-11-02
2009-01-2775
A unique silver/alumina selective catalytic reduction (SCR) catalyst which used hydrocarbons (HC-SCR) to reduce NOx emissions was investigated. Diesel fuel or ethanol were used as the reductants to evaluate catalyst performance. Several full size 5.0L monolith 2.0 and 3.0 wt.% Ag2O-Al2O3 catalysts were created. Testing was conducted using a 6.6L Duramax turbocharged heavy duty diesel engine. Dynamometer testing on the heavy duty FTP and SET 13 transient test cycles was conducted. The NOx conversion efficiency was evaluated as a function of catalyst volume, inlet cone angle, hydrocarbon to NOx ratio (HC:NOx), and space velocity. Oxygen effects on the NOx reaction and the HC slip past the HC-SCR catalyst were also determined. An FTIR was used to evaluate unregulated emissions. Testing on the heavy duty FTP and SET 13 test cycles, with diesel fuel as the reductant, resulted in a 60% and 65% NOx conversion reduction respectively.
Technical Paper

Numerical Modeling and Experimental Investigations of EGR Cooler Fouling in a Diesel Engine

2009-04-20
2009-01-1506
EGR coolers are mainly used on diesel engines to reduce intake charge temperature and thus reduce emissions of NOx and PM. Soot and hydrocarbon deposition in the EGR cooler reduces heat transfer efficiency of the cooler and increases emissions and pressure drop across the cooler. They may also be acidic and corrosive. Fouling has been always treated as an approximate factor in heat exchanger designs and it has not been modeled in detail. The aim of this paper is to look into fouling formation in an EGR cooler of a diesel engine. A 1-D model is developed to predict and calculate EGR cooler fouling amount and distribution across a concentric tube heat exchanger with a constant wall temperature. The model is compared to an experiment that is designed for correlation of the model. Effectiveness, mass deposition, and pressure drop are the parameters that have been compared. The results of the model are in a good agreement with the experimental data.
Journal Article

Control Strategy for the Removal of NOx from Diesel Engine Exhaust using Hydrocarbon Selective Catalytic Reduction

2008-10-06
2008-01-2486
A unique catalyst developed using high-throughput discovery techniques in collaboration with BASF Corporation and Accelrys, Inc. was investigated at General Motors under simulated diesel engine exhaust feed conditions for the selective catalytic reduction of NOx. A hydrocarbon mixture was used as the reductant to model the multi-component nature of diesel fuel and the catalyst was evaluated over a wide range of temperatures (150 - 550°C) relevant to light-duty diesel exhaust. This report investigates the effects of NOx (as NO or NO2), hydrocarbon concentration level (HC:NOx ratio), oxygen concentration, NO concentration, catalyst space velocity, catalyst temperature, and the co-presence of hydrogen on steady-state NOx reduction activity. Using these results, a control strategy was developed to maximize NOx conversion over the wide-ranging exhaust conditions likely to be encountered in light-duty diesel applications.
Technical Paper

HC-SCR Catalyst Performance in Reducing NOx Emissions from a Diesel Engine Running Transient Test Cycles

2008-10-06
2008-01-2487
The two most common NOx reducing technologies, in an oxygen abundant exhaust stream, are urea selective catalytic reduction urea-SCR and lean NOx trap (LNT) catalysts. Each technology has advantages and disadvantages. Another selective catalytic reduction (SCR) catalyst that uses hydrocarbons (HC-SCR), specifically diesel fuel, as the reductant to reduce NOx emissions was investigated. This catalyst is a result of a high throughput discovery project and conducted in cooperation with BASF, Accelrys and funded by the Department of Energy (DOE.) Several full size 5.0L monolith catalysts were made and evaluated using a V6 turbo charged diesel engine connected to a dynamometer running light-duty transient test cycles. The NOx efficiency on the HWYFET and US06 tests were measured to be 92% and 76% respectively. The FTP was 60% on a weighted basis.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

2007-04-16
2007-01-0905
Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

A LNT+SCR System for Treating the NOx Emissions from a Diesel Engine

2006-04-03
2006-01-0210
An aftertreatment system involving a LNT followed by a SCR catalyst is proposed for treating the NOx emissions from a diesel engine. NH3 (or urea) is injected between the LNT and the SCR. The SCR is used exclusively below 400°C due to its high NOx activity at low temperatures and due to its ability to store and release NH3 below 400°C, which helps to minimize NH3 and NOx slip. Above 400°C, where the NH3 storage capacity of the SCR falls to low levels, the LNT is used to store the NOx. A potassium-based LNT is utilized due to its high temperature NOx storage capability. Periodically, hydrocarbons are oxidized on the LNT under net lean conditions to promote the thermal release of the NOx. NH3 is injected simultaneously to reduce the released NOx over the SCR. The majority of the hydrocarbons are oxidized on the front portion of the LNT, resulting in the rapid release of stored NOx from that portion of the LNT.
Technical Paper

Characterizing Light-Off Behavior and Species-Resolved Conversion Efficiencies During In-Situ Diesel Oxidation Catalyst Degreening

2006-04-03
2006-01-0209
Degreening is crucial in obtaining a stable catalyst prior to assessing its performance characteristics. This paper characterizes the light-off behavior and conversion efficiency of a Diesel Oxidation Catalyst (DOC) during the degreening process. A platinum DOC is degreened for 16 hours in the presence of actual diesel engine exhaust at 650°C and 10% water (H2O) concentration. The DOC's activity for carbon monoxide (CO) and for total hydrocarbons (THC) conversion is checked at 0, 1, 2, 3, 4, 6, 8, 10, 12, and 16 hours of degreening. Pre-and post-catalyst hydrocarbon species are analyzed via gas chromatography at 0, 4, 8, and 16 hours of degreening. It is found that both light-off temperature and species-resolved conversion efficiencies change rapidly during the first 8 hours of degreening and then stabilize to a large degree. T50, the temperature where the catalyst is 50% active towards a particular species, increases by 14°C for CO and by 11°C for THC through the degreening process.
Technical Paper

Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion

2006-04-03
2006-01-0201
Premixed compression ignition low-temperature diesel combustion (PCI) can simultaneously reduce particulate matter (PM) and oxides of nitrogen (NOx). Carbon monoxide (CO) and total hydrocarbon (THC) emissions increase relative to conventional diesel combustion, however, which may necessitate the use of a diesel oxidation catalyst (DOC). For a better understanding of conventional and PCI combustion, and the operation of a platinum-based production DOC, engine-out and DOC-out exhaust hydrocarbons are speciated using gas chromatography. As combustion mode is changed from lean conventional to lean PCI to rich PCI, engine-out CO and THC emissions increase significantly. The relative contributions of individual species also change; increasing methane/THC, acetylene/THC and CO/THC ratios indicate a richer combustion zone and a reduction in engine-out hydrocarbon incremental reactivity.
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
Technical Paper

Quantification of Local Ozone Production Attributable to Automobile Hydrocarbon Emissions

2001-11-12
2001-01-3760
When automobile hydrocarbons are exhausted into the atmosphere in the presence of NOx and sunlight, ground-level ozone is formed. While researchers have used Maximum Incremental Reactivity (MIR) factors to estimate ozone production, this procedure often overestimates Local Ozone Production (LOP) because it does not consider local atmospheric conditions. In this paper, an enhanced MIR methodology for estimating actual LOP attributable to a vehicle in a particular ozone problem area is presented. In addition to using tabulated MIR factors, the procedure also uses local hydrocarbon reaction terms and a relative mechanistic reactivity term that account for local atmospheric conditions. Through this approach, the effects of hydrocarbon reaction rates, hydrocarbon residence times, and prevailing HC/NOx ratio are accounted for. The procedure is intended to enable automotive engineers to more realistically estimate actual local ozone production resulting from hydrocarbon emissions.
X