Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Influence of Port Water Injection on the Combustion Characteristics and Exhaust Emissions in a Spark-Ignition Direct-Injection Engine

2020-04-14
2020-01-0294
It is well known that engine downsizing is still the main energy-saving technology for spark-ignition direct-injection (SIDI) engine. However, with the continuous increase of the boosting ratio, the gasoline engine is often accompanied by the occurrence of knocking, which has the drawback to run the engine at retarded combustion phasing. Besides, in order to protect the turbine blades from being sintered by high exhaust temperature, the strategies of fuel enrichment are often taken to reduce the combustion temperature, which ultimately leads to a high level of particulate number emission. Therefore, to address the issues discussed above, the port water injection (PWI) techniques on a 1.2-L turbocharged, three-cylinder, SIDI engine were investigated. Measurements indicate that the optimization of spark timing has a significant impact on its performance.
Technical Paper

Numerical Investigation of the Effects of Port Water Injection Timing on Performance and Emissions in a Gasoline Direct Injection Engine

2020-04-14
2020-01-0287
Port water injection is considered as a promising strategy to further improve the combustion performance of internal combustion engines for its benefit in knock resistance by reducing the cylinder temperature. A thorough investigation of the port water injection technique is required to fully understand its effects on the engine combustion process. This study explores the potential of the port water injection technique in improving the performance of a turbo charged Gasoline Direct Injection engine. A 3D computational fluid dynamics model is applied to simulate the in-cylinder mixing and combustion for this engine both with and without water injection. Different water injection timings are investigated and it is found that the injection timing greatly effects the mass of water which enters the combustion chamber, both in liquid and vapor form.
Technical Paper

Tumble Vortex Characterization by Complex Moments

2018-04-03
2018-01-0207
Rotating flow inside an internal combustion engine cylinder is deliberately engineered for improved fuel-air mixing and combustion. The details of the rotating flow structure vary temporally over an engine cycle as well as cyclically at the same engine phase. Algorithms in the literature to identify these structural details of the rotating flow invariably focus on locating its center and, on occasion, measuring its rotational strength and spatial extent. In this paper, these flow structure parameters are evaluated by means of complex moments, which have been adapted from image (scalar field) recognition applications to two-dimensional flow pattern (vector field) analysis. Several additional detailed characteristics of the rotating flow pattern - the type and extent of its deviation from the ideal circular pattern, its rotational and reflectional symmetry (if exists), and thus its orientation - are also shown to be related to the first few low-order complex moments of the flow pattern.
Technical Paper

Experimental Investigation of Fuel Film Characteristics of Ethanol Impinging Spray at Ultra-Low Temperature

2017-03-28
2017-01-0851
Increasing the injection pressure in DISI engine is an efficient way to obtain finer droplets but it will also potentially cause spray impingement on the cylinder wall and piston. Consequently, the fuel film sticking on the wall can dramatically increase the soot emission of the engine especially in a cold start condition. On the other hand, ethanol is widely used as an alternative fuel in DI engine due to its sustainable nature and high octane number. In this study, the fuel film characteristics of single-plume ethanol impinging spray was investigated. The experiments were performed under ultra-low fuel/plate temperature to simulate the cold start condition in cold areas. A low temperature thermostatic bath combined with specially designed heat exchangers were used to achieve ultra-low temperature for both the impinging plate and the fuel. Laser induced fluorescence (LIF) technique was employed to measure the thickness of fuel film deposited on the impinging plate.
X