Refine Your Search

Topic

Search Results

Technical Paper

A Novel Approach to Constructing Reactivity-Based Simplified Combustion Model for Dual Fuel Engine

2023-10-31
2023-01-1627
To achieve higher efficiencies and lower emissions, dual-fuel strategies have arisen as advanced engine technologies. In order to fully utilize engine fuels, understanding the combustion chemistry is urgently required. However, due to computation limitations, detailed kinetic models cannot be used in numerical engine simulations. As an alternative, approaches for developing reduced reaction mechanisms have been proposed. Nevertheless, existing simplified methods neglecting the real engine combustion processes, which is the ultimate goal of reduced mechanism. In this study, we propose a novel simplified approach based on fuel reactivity. The high-reactivity fuel undergoes pyrolysis first, followed by the pyrolysis and oxidation of the low-reactivity fuel. Therefore, the simplified mechanism consists of highly lumped reactions of high-reactivity fuel, radical reactions of low-reactivity fuel and C0-C2 core mechanisms.
Technical Paper

Combustion and Emissions Improved by Using Flash Boiling Sprays and High-Energy Ignition Technologies in an Ethanol-Gasoline Optical Engine

2021-04-06
2021-01-0472
To alleviate the shortage of petroleum resources and the air pollution caused by the burning of fossil fuels, the development of renewable fuels has attracted widespread attention. Among the various renewable fuels, ethanol can be produced from biomass and does not require much modification when applied to practical engines, so it has been widely used. However, ethanol fuel has a higher heat of vaporization than gasoline, it is difficult to evaporate and atomize under cold start conditions. Besides, the catalyst has not reached the conversion temperature at this time, resulting in lower conversion efficiency. These factors all lead to higher pollutant emission levels in ethanol-gasoline blends. To solve the above problems, this research used visualization techniques to compare the effects of flash boiling and high-energy ignition technologies on the in-cylinder combustion process and pollutant emission of ethanol-gasoline blends fuel.
Technical Paper

Experimental Investigation of Injection Strategies to Improve Intelligent Charge Compression Ignition (ICCI) Combustion with Methanol and Biodiesel Direct Injection

2020-09-15
2020-01-2072
Applications of methanol and biodiesel in internal combustion engines have raised widespread concerns, but there is still huge scope for improvement in efficiency and emissions. The brand-new combustion mode, named as Intelligent Charge Compression Ignition (ICCI) combustion, was proposed with methanol-biodiesel dual fuel direct injection. In this paper, effects of injection parameters such as two-stage split-injections, injection timings, injection pressure and intake pressure on engine combustion and emissions were investigated at IMEP = 8, 10, and 12 bar. Results show that the indicated thermal efficiency up to 53.5% and the NOx emissions approaching to EURO VI standard can be obtained in ICCI combustion mode.
Technical Paper

Combustion Characterization of Neat n-Butanol in an SI Engine

2020-04-14
2020-01-0334
Increasingly stringent emission standards have promoted the interest in alternate fuel sources. Because of the comparable energy density to the existing fossil fuels and renewable production, alcohol fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. In this research, the combustion characteristics of neat n-butanol are analyzed under spark ignition operation using a single cylinder SI engine. The fuel is injected into the intake manifold using a port-fuel injector. Two modes of charge dilution were used in this investigation to test the limits of stable engine operation, namely lean burn using excess fresh air and exhaust gas recirculation (EGR). The in-cylinder pressure measurement and subsequently, heat release analysis are used to investigate the combustion characteristics of the fuel under low load SI engine operation.
Technical Paper

Hydrogen-Diesel Engine: Problems and Prospects of Improving the Working Process

2019-04-02
2019-01-0541
The diesel engine with direct injection of hydrogen gas has clear advantages over the hydrogen engine with forced ignition of a hydrogen-air mixture. Despite of this, the concept of hydrogen-diesel engine has not investigated until now. In the paper, a detailed study of the working process of hydrogen-diesel engine carried out for the first time. Based on the results of the experimental studies and mathematical modeling, it has established that the behavior of thermo-physical processes in the combustion chamber of hydrogen-diesel engine, in a number of cases, differs fundamentally from the processes that take place in the conventional diesel engines. There have been identified the reasons for their difference and determined the values of the operating cycle parameters of hydrogen diesel engine, which provide the optimal correlation between the indicator values and the environmental performance.
Technical Paper

Characteristics of Impinging Spray and Corresponding Fuel Film under Different Injection and Ambient Pressure

2019-04-02
2019-01-0277
It has been found that the spray impingement on piston for SIDI engines significantly influences engine emission and combustion efficiency. Fuel film sticking on the wall will dramatically cause deterioration of engine friction performance, incomplete combustion, and substantial cycle-to-cycle variations. When increasing the injection pressure, these effects are more pronounce. Besides, the ambient pressure also plays an important role on the spray structure and influences the footprint of impinging spray on the plate. However, the dynamic behavior of impinging spray and corresponding film was not investigated thoroughly in previous literature. In this study, simultaneous measurements of macroscopic structure (side view) and its corresponding footprint (bottom view) of impinging spray was conducted using a single-hole, prototype injector in a constant volume chamber.
Technical Paper

Dual Fuel Injection (DI + PFI) for Knock and EGR Dilution Limit Extension in a Boosted SI Engine

2018-09-10
2018-01-1735
Combined direct and port fuel injection (i.e., dual injection) in spark ignition engines is of increasing interest due to the advantages for fuel flexibility and the individual merits of each system for improving engine performance and reducing engine-out emissions. Greater understanding of the impact of dual injection will enable deriving the maximum benefit from the two injection systems. This study investigates the effects of dual injection on combustion, especially knock propensity and tolerance to exhaust gas recirculation (EGR) dilution at different levels of EGR. A baseline for comparison with dual injection results was made using direct injection fueling only. A splash blended E20 fuel was used for the direct injection only tests. For the dual injection tests, gasoline, representing 80% by volume of the total fuel, was injected using the direct injector, and ethanol, representing 20% by volume of the total fuel, was injected using the port fuel injector.
Technical Paper

Effects of Injection Rate Profiles on Auto-Ignition in Ignition Quality Tester

2018-09-10
2018-01-1695
Ignition quality tester (IQT) is a standard experimental device to determine ignition delay time of liquid fuels in a controlled environment in the absence of gas exchange. The process involves fuel injection, spray breakup, evaporation and mixing, which is followed by auto-ignition. In this study, three-dimensional computational fluid dynamics (CFD) is used for prediction of auto-ignition characteristics of diethyl ether (DEE) and ethanol. In particular, the sensitivity of the ignition behavior to different injection rate profiles is investigated. Fluctuant rate profile derived from needle lift data from experiments performs better than square rate profile in ignition delay predictions. DEE, when used with fluctuant injection rate profile resulted in faster ignition, while for ethanol the situation was reversed. The contrasting results are attributed to the difference in local mixing.
Technical Paper

A Computational Study of Lean Limit Extension of Alcohol HCCI Engines

2018-09-10
2018-01-1679
The purpose of present numerical study was to extend the operating range of alcohol (methanol and ethanol) fueled Homogeneous Charge Compression Ignition (HCCI) engine under low load conditions. Ignition of pure methanol and ethanol under HCCI mode of operation requires high intake temperatures and misfires at low loads are common in HCCI engines. Three methods have been adapted to optimize the use of methanol and ethanol for HCCI operation without increasing the intake temperature. First, blending methanol and ethanol with ignition improver, namely di-methyl ether (DME) and di-ethyl ether (DEE), was used to increase the cetane number and ignitability of premixed charge. Second, based on the blended fuels, the spark assistance was used to reduce required intake temperature for auto-ignition. Third, DME and DEE were directly injected to methanol and ethanol operated HCCI engine, in the form of Reactivity Controlled Compression Ignition (RCCI) combustion.
Technical Paper

Early Pilot Injection Strategies for Reactivity Control in Diesel-ethanol Dual Fuel Combustion

2018-04-03
2018-01-0265
This paper examines the diesel-ethanol dual fuel combustion at medium engine loads on a single-cylinder research diesel engine with a compression ratio of 16.5:1. The effect of exhaust gas recirculation (EGR) and ethanol energy ratio was investigated for the dual fuel combustion to achieve simultaneously ultra-low NOx and soot emissions. A medium ethanol ratio of about 0.6 was found suitable to meet the requirements for mixing enhancement and ignition control, which resulted in the lowest NOx and soot emissions among the tested ethanol ratios. A double-pilot injection strategy was found competent to lower the pressure rise rate owing to the reduced fuel quantity in the close-to-TDC injection. The advancement of pilot injection timing tended to reduce the CO and THC emissions, which is deemed beneficial for high EGR operations. The reactivity mutual-modulation between the diesel pilot and the background ethanol mixture was identified.
Technical Paper

Infrared Borescopic Evaluation of High-Energy and Long-Duration Ignition Systems for Lean/Dilute Combustion in Heavy-Duty Natural-Gas Engines

2018-04-03
2018-01-1149
Natural gas (NG) is attractive for heavy-duty (HD) engines for reasons of cost stability, emissions, and fuel security. NG cannot be reliably compression-ignited, but conventional gasoline ignition systems are not optimized for NG and are challenged to ignite mixtures that are lean or diluted with exhaust-gas recirculation (EGR). NG ignition is particularly challenging in large-bore engines, where completing combustion in the available time is more difficult. Using two high-speed infrared (IR) cameras with borescopic access to one cylinder of an HD NG engine, the effect of ignition system on the early flame-kernel development and cycle-to-cycle variability (CCV) was investigated. Imaging in the IR yielded strong signals from water emission lines, which located the flame front and burned-gas regions and obviated image intensifiers. A 9.7-liter, six-cylinder engine was modified to enable exhaust-gas recirculation and to provide optical access.
Technical Paper

Effects of Fuel Injection Events of Ethanol and Gasoline Blends on Boosted Direct-Injection Engine Performance

2017-10-08
2017-01-2238
Numerous studies have demonstrated the benefits of ethanol in increasing the thermal efficiency of gasoline-fueled spark ignition engines via the higher enthalpy of vaporization and higher knock resistance of ethanol compared with gasoline. This study expands on previous work by considering a split fuel injection strategy with a boosted direct injection spark ignition engine fueled with E0 (100% by volume reference grade gasoline; with research octane number = 91 and motor octane number = 83), E100 (100% by volume anhydrous ethanol), and various splash-blends of the two fuels. Experiments were performed using a production 3-cylinder Ford Ecoboost engine where two cylinders were de-activated to create a single-cylinder engine with a displacement of 0.33 L. The engine was operated over a range of loads with boosted intake manifold absolute pressure (MAP) from 1 bar to 1.5 bar.
Technical Paper

Effect of High Frequency Acoustic Field on Atomization Behavior of Ethanol and Kerosene

2017-10-08
2017-01-2318
Combustion instability often occurs inside the combustion chamber of aero engine. Fuel atomization and evaporation, one of the controlling processes of combustion rate, is an important mechanism of the combustion instability. To tackle combustion instability, it challenges a deep understanding of the underlying mechanism of fuel atomization and evaporation. In this paper, acoustic field was established to simulate the pressure oscillation. Transient spray images of ethanol and kerosene were recorded using high-speed camera. The obtained images were processed by MATLAB to extract and analyze the related data. Spatial fuel atomization characteristics was analytically examined by multi-threshold image method to analyze the effect of the high frequency acoustic field on the fuel break-up and disintegration. The results show that the half spray cone angle on the side with speaker is suppressed by the presence of the imposed acoustic field compared with the case without speaker.
Technical Paper

Development and Validation of a Binary Surrogate Model for Biodiesel

2017-10-08
2017-01-2326
In the present study a novel surrogate model for biodiesel including methyl decanoate (MD) and methyl crotonate (MC) was proposed and validated. In the binary mixture of surrogate fuel, MD was chosen to represent saturated methyl esters, which exhibited great low-temperature reactivity with typical negative temperature-coefficient (NTC) behavior and MC represented unsaturated components in real biodiesel, which was mainly responsible for soot formation and evolution. The proportion of MD and MC was determined by matching the characteristics such as derived cetane number (DCN), molecular weight (MW), atom number, H/C ratio and unsaturated degree. All of the criterions were calculated by the least square principles and the calculated surrogate of biodiesel was comprised of 92% MD and 8% MC in mole fraction. Furthermore, detailed kinetic model of the surrogate fuel was constructed and developed with modifications, which was composed of 2918 species and 9164 reactions.
Technical Paper

Partial Premixing Effects on the Evolution of Soot Morphology and Nanostructure in Co-Flow Flames of a Biodiesel Surrogate

2017-10-08
2017-01-2397
Biodiesel is a potential alternative fuel which can meet the growing need for sustainable energy. Partially premixed compression ignition (PPCI) is an important low-temperature combustion strategy to reduce NOx and soot emission of diesel engines. To investigate partial premixing impact on particle formation in flames of biodiesel or biodiesel surrogates, an experimental study was performed to compare the soot morphology and nanostructure evolution in laminar co-flow methyl decanoate non-premixed flame (NPF) and partially premixed flame (PPF). The thermophoretic sampling technique was used to capture particles along flame centerlines. Soot morphology information and volume fraction were obtained from TEM analysis and nanostructure features were evaluated by HR-TEM. With primary equivalence ratio of 19, gas temperature of PPF is higher along flame centerline compared with NPF. The results show an initially stronger sooting tendency in PPF at lower positions.
Technical Paper

Experimental Investigation of Fuel Film Characteristics of Ethanol Impinging Spray at Ultra-Low Temperature

2017-03-28
2017-01-0851
Increasing the injection pressure in DISI engine is an efficient way to obtain finer droplets but it will also potentially cause spray impingement on the cylinder wall and piston. Consequently, the fuel film sticking on the wall can dramatically increase the soot emission of the engine especially in a cold start condition. On the other hand, ethanol is widely used as an alternative fuel in DI engine due to its sustainable nature and high octane number. In this study, the fuel film characteristics of single-plume ethanol impinging spray was investigated. The experiments were performed under ultra-low fuel/plate temperature to simulate the cold start condition in cold areas. A low temperature thermostatic bath combined with specially designed heat exchangers were used to achieve ultra-low temperature for both the impinging plate and the fuel. Laser induced fluorescence (LIF) technique was employed to measure the thickness of fuel film deposited on the impinging plate.
Technical Paper

Measurement of Temperature and Soot (KL) Distributions in Spray Flames of Diesel-Butanol Blends by Two-Color Method Using High-Speed RGB Video Camera

2016-10-17
2016-01-2190
Taking advantages of high speed RGB video cameras, the two-color method can be implemented with a relatively simple setup to obtain the temporal development of the two dimensional temperature and soot (KL) distributions in a reacting diesel jet. However, several issues such as the selection of the two wavelengths, the role of bandpass filters, and the proper optical settings, etc. should be known to obtain a reliable measurement. This paper, at first, discusses about the uncertainties in the measurement of temperature and KL distributions in the diesel flame by the two-color method using the high speed RGB video camera. Since n-butanol, as an alternative renewable fuel, has the potential application in diesel engines, the characteristic of spray combustion of diesel-butanol blends under the diesel-like ambient conditions in a pre-burning constant-volume combustion chamber is studied.
Technical Paper

Alternative Fuel Property Correlations to the Honda Particulate Matter Index (PMI)

2016-10-17
2016-01-2250
The Honda Particulate Matter Index (PMI) is a very helpful tool which provides an indication of a fuel’s sooting tendency. Currently, the index is being used by various laboratories and vehicle OEMs as a metric to understand a fuels impact on automotive engine sooting, in preparation for new global emissions regulations. The calculation of the index involves generating detailed hydrocarbon analysis (hydrocarbon molecular speciation) using gas chromatography laboratory equipment and the PMI calculation requires the exact list of compounds and correct naming conventions to work properly. The analytical methodology can be cumbersome, when the gas chromatography methodology has to be adjusted for new compounds that are not in the method, or if the compounds are not matching the list for quantification. Also, the method itself is relatively expensive, and not easily transferrable between labs.
Journal Article

Potential Natural Gas Impact on Cost Efficient Capacity Planning for Automakers and Electricity Generators in a Carbon Constrained World

2015-04-14
2015-01-0466
Greenhouse gas (GHG) emission targets are becoming more stringent for both automakers and electricity generators. With the introduction of plug-in hybrid and electric vehicles, transportation and electricity generation sectors become connected. This provides an opportunity for both sectors to work together to achieve the cost efficient reduction of CO2 emission. In addition, the abundant natural gas (NG) in USA is drawing increased attention from both policy makers and various industries due to its low cost and low carbon content. NG has the potential to ease the pressure from CO2 emission constraints for both the light duty vehicle (LDV) and the electricity generation sectors while simultaneously reducing their fuel costs. To quantify the benefit of this collaboration, an analytical model is developed to evaluate the total societal cost and CO2 emission for both sectors.
Technical Paper

Impact of Ester Structures on the Soot Characteristics and Soot Oxidative Reactivity of Biodiesel

2015-04-14
2015-01-1080
A study and analysis of the relation of biodiesel chemical structures to the resulting soot characteristics and soot oxidative reactivity is presented. Soot samples generated from combustion of various methyl esters, alkanes, biodiesel and diesel fuels in laminar co-flow diffusion flames are analyzed to evaluate the impact of fuel-bound oxygen in fatty acid esters on soot oxidation behavior. Thermogravimetric analysis (TGA) of soot samples collected from diffusion flames show that chemical variations in biodiesel ester compounds have an impact on soot oxidative reactivity and soot characteristics in contrast to findings reported previously in the literature. Soot derived from methyl esters with shorter alkyl chains, such as methyl butyrate and methyl hexanoate, exhibit higher reactivity than those with longer carbon chain lengths, such as methyl oleate, which are more representative of biodiesel fuels.
X