Refine Your Search

Topic

Author

Search Results

Technical Paper

Crash Performance of Steel, Aluminum and Carbon Fiber Composite Bumper Beams with Steel Crush Cans

2021-04-06
2021-01-0286
In frontal collision of vehicles, the front bumper system is the first structural member that receives the energy of collision. In low speed impacts, the bumper beam and the crush cans that support the bumper beam are designed to protect the engine and the radiator from being damaged, while at high speed impacts, they are required to transfer the energy of impact as uniformly as possible to the front rails that contributes to the occupant protection. The bumper beam material today is mostly steels and aluminum alloys, but carbon fiber composites have the potential to reduce the bumper weight significantly. In this study, crash performance of bumper beams made of a boron steel, aluminum alloy 5182 and a carbon fiber composite with steel crush cans is examined for their maximum deflection, load transfer to crush cans, total energy absorption and failure modes using finite element analysis.
Technical Paper

Using Deep Learning to Predict the Engine Operating Point in Real-Time

2021-04-06
2021-01-0186
The engine operating point (EOP), which is determined by the engine speed and torque, is an important part of a vehicle's powertrain performance and it impacts FC, available propulsion power, and emissions. Predicting instantaneous EOP in real-time subject to dynamic driver behaviour and environmental conditions is a challenging problem, and in existing literature, engine performance is predicted based on internal powertrain parameters. However, a driver cannot directly influence these internal parameters in real-time and can only accommodate changes in driving behaviour and cabin temperature. It would be beneficial to develop a direct relationship between the vehicle-level parameters that a driver could influence in real-time, and the instantaneous EOP. Such a relationship can be exploited to dynamically optimize engine performance.
Technical Paper

Energy-Efficient Traction Induction Machine Control

2019-04-02
2019-01-0598
The article solves the problem of increasing the energy efficiency of the traction electric drive in the low load conditions. The set objective is achieved by analogy with internal combustion engines by decreasing the consumed energy using the amplitude control of the three-phase voltage of the induction machine. The basis of the amplitude control is laid by the constancy criterion of the overload capacity with respect to the electromagnetic torque, which provides a reliable reserve from a "breakdown" of the induction machine mode in a wide range of speeds and loads. The control system of the traction electric drive contains a reference model of electromechanical energy conversion represented by the generalized equations of the instantaneous balance of the active and reactive power and the mechanical load. The induction machine is controlled by two adaptive variables: the electromagnetic torque and the voltage amplitude.
Technical Paper

Driver Workload in an Autonomous Vehicle

2019-04-02
2019-01-0872
As intelligent automated vehicle technologies evolve, there is a greater need to understand and define the role of the human user, whether completely hands-off (L5) or partly hands-on. At all levels of automation, the human occupant may feel anxious or ill-at-ease. This may reflect as higher stress/workload. The study in this paper further refines how perceived workload may be determined based on occupant physiological measures. Because of great variation in individual personalities, age, driving experiences, gender, etc., a generic model applicable to all could not be developed. Rather, individual workload models that used physiological and vehicle measures were developed.
Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

2018-04-03
2018-01-0801
A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Technical Paper

Analysis and Optimization of Seat and Suspension Parameters for Occupant Ride Comfort in a Passenger Vehicle

2018-04-03
2018-01-1404
This study presents a methodology for comparative analysis of seat and suspension parameters on a system level to achieve minimum occupant head displacement and acceleration, thereby improving occupant ride comfort. A lumped-parameter full-vehicle ride model with seat structures, seat cushions and five occupants has been used. Two different vehicle masses are considered. A low amplitude pulse signal is provided as the road disturbance input. The peak vertical displacement and acceleration of the occupant’s head due to the road disturbance are determined and used as measures of ride comfort. Using a design of experiments approach, the most critical seat cushion, seat structure and suspension parameters and their interactions affecting the occupant head displacement and acceleration are determined. An optimum combination of parameters to achieve minimum peak vertical displacement and acceleration of the occupant’s head is identified using a response surface methodology.
Technical Paper

Integrated Brake Squeal with Induced Thermal Stress Analysis

2017-06-05
2017-01-1900
Brake squeal is an instability issue with many parameters. This study attempts to assess the effect of thermal load on brake squeal behavior through finite element computation. The research can be divided into two parts. The first step is to analyze the thermal conditions of a brake assembly based on ANSYS Fluent. Modeling of transient temperature and thermal-structural analysis are then used in coupled thermal-mechanical analysis using complex eigenvalue methods in ANSYS Mechanical to determine the deformation and the stress established in both the disk and the pad. Thus, the influence of thermal load may be observed when using finite element methods for prediction of brake squeal propensity. A detailed finite element model of a commercial brake disc was developed and verified by experimental modal analysis and structure free-free modal analysis.
Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Technical Paper

An Examination of Driver Eye Glance Behavior, Navigational Errors, and Subjective Assessments While Using In-Vehicle Navigational Systems With and Without Landmark Enhancements

2017-03-28
2017-01-1375
This study investigated the effects of three navigation system human-machine interfaces (HMIs) on driver eye-glance behavior, navigational errors, and subjective assessments. Thirty-six drivers drove an unfamiliar 3-segment route in downtown Detroit. HMIs were 2D or 3D (level-of-detail) electronic map display + standard voice prompts, or 3D map-display augmented by photorealistic images + landmark-enhanced voice prompts. Participants drove the same three route segments in order but were assigned a different HMI condition/segment in a 3-period/3-treatment crossover experimental design. Results indicate that drivers’ visual attention using the advanced navigation systems HMIs were within US Department of Transportation recommended visual distraction limits. More turns missed in the first route segment, regardless of HMI, were attributable to greater route complexity and a late-onset voice prompt. Participant’s ratings of HMIs were influenced by the context in which that HMI was used.
Technical Paper

Synchronous Motor with Silicon Steel Salient Poles Rotor and All Coils Placed on the Stator

2017-03-28
2017-01-1606
In this paper, we consider a new design of synchronous motor with salient poles rotor and all coils placed on the stator. This design, uses a laminated silicon steel rotor, which is not so expensive as a rotor with super strong permanent magnets. This design of machine eliminates copper rings on the rotor and brushes which is used in regular synchronous motors, and eliminates disadvantages involved with these arrangements. In an earlier publication, authors considered the opportunity realization of synchronous mode operation in the machine with salient pole rotor and DC stator excitation. Now, we consider the new synchronous mode operation with individual DC excitation of each the alternative current (AC) windings for realization the first, second and third phase synchronous machines. In theoretical basics of analyses and design of synchronous motors we pay more attention to the single-phase motor because it is the basis for design polyphase synchronous machines.
Technical Paper

The Multiobjective Optimal Design Problems and their Pareto Optimal Fronts for Li-Ion Battery Cells

2016-04-05
2016-01-1199
This paper begins with a baseline multi-objective optimization problem for the lithium-ion battery cell. Maximizing the energy per unit separator area and minimizing the mass per unit separator area are considered as the objectives when the thickness and the porosity of the positive electrode are chosen as design variables in the baseline problem. By employing a reaction zone model of a Graphite/Iron Phosphate Lithium-ion Cell and the Genetic Algorithm, it is shown the shape of the Pareto optimal front for the formulated optimization takes a convex form. The identified shape of the Pareto optimal front is expected to guide Design of Experiments (DOE) and product design. Compared with the conventional studies whose optimizations are based on a single objective of maximizing the specific energy, the proposed multi-objective optimization approach offers more flexibility to the product designers when trade-off between conflicting objectives is required.
Journal Article

Measurement and Modeling of Perceived Gear Shift Quality for Automatic Transmission Vehicles

2014-05-09
2014-01-9125
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Technical Paper

A Transportable Instrumentation Package for In-Vehicle On-Road Data Collection for Driver Research

2013-04-08
2013-01-0202
We present research in progress to develop and implement a transportable instrumentation package (TIP) to collect driver data in a vehicle. The overall objective of the project is to investigate the symbiotic relationship between humans and their vehicles. We first describe the state-of-art technologies to build the components of TIP that meet the criteria of ease of installation, minimal interference with driving, and sufficient signals to monitor driver state and condition. This method is a viable alternative to current practice which is to first develop a fully instrumented test vehicle, often at great expense, and use it to collect data from each participant as he/she drives a prescribed route. Another practice, as for example currently being used in the SHRP-2 naturalistic driving study, is to install the appropriate instrumentation for data collection in each individual's vehicle, often requiring several hours.
Journal Article

Effect of Temperature Variation on Stresses in Adhesive Joints between Magnesium and Steel

2012-04-16
2012-01-0771
This study considers the thermal stresses in single lap adhesive joints between magnesium and steel. The source of thermal stresses is the large difference in the coefficients of thermal expansion of magnesium and steel. Two different temperature differentials from the ambient conditions (23°C) were considered, namely -30°C and +50°C. Thermal stresses were determined using finite element analysis. In addition to Mg-steel substrate combination, Mg-Mg and steel-steel combinations were also studied. Combined effect of temperature variation and applied load was also explored. It was observed that temperature increase or decrease can cause significant thermal stresses in the adhesive layer and thermal stress distribution in the adhesive layer depends on the substrate combination and the applied load.
Technical Paper

Seat Comfort as a Function of Occupant Characteristics and Pressure Measurements at the Occupant-Seat Interface

2012-04-16
2012-01-0071
Seat comfort is a highly subjective attribute and depends on a wide range of factors, but the successful prediction of seat comfort from a group of relevant variables can hold the promise of eliminating the need for time-consuming subjective evaluations during the early stages of seat cushion selection and development. This research presents the subjective seat comfort data of a group of 30 participants using a controlled range of seat foam samples, and attempts to correlate this attribute with a) the anthropometric and demographic characteristics of the participants, b) the objective pressure distribution at the body-seat interface and c) properties of the various foam samples that were used for the test.
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Technical Paper

Simulating an Integrated Business Environment that Supports Systems Integration

2010-10-19
2010-01-2305
This paper describes the design and application of a business simulation to help train employees about the new business model and culture that for an automotive supplier company that designs connected vehicle and other advanced electronic products for the automotive industry. The simulation, called SIM-i-TRI, is a three to four day collaborative learning activity that simulates the executive, administrative, engineering, manufacturing, and marketing functions in three divisions of a manufacturer that supplies parts and systems to customers in industries similar to the automotive industry. It was originally designed to support the new employee orientation at the Tier 1 supplier and to provide the participants a safe environment to practice the lessons from the orientation. The simulation has been used several times a month in the US, England, and Germany for over four years.
Technical Paper

How the University of Michigan-Dearborn Prepares Engineering Graduates for Careers in Automotive Systems Engineering

2010-10-19
2010-01-2327
The automotive industry is expected to accelerate the transition to revolutionary products, rapid changes in technology and increasing technological sophistication. This will require engineers to advance their knowledge, connect and integrate different areas of knowledge and be skilled in synthesis. In addition, they must learn to work in cross-disciplinary teams and adopt a systems approach. The College of Engineering and Computer Science (CECS) at the University of Michigan-Dearborn (UM-Dearborn) responded by creating interdisciplinary MS and Ph.D. programs in automotive systems engineering (ASE) and augmenting them with hands-on research. Students at the undergraduate level can also engage in numerous ASE activities. UM-Dearborn's ASE programs offer interesting and possibly unique advantages. The first is that it offers a spectrum of ASE degree and credit programs, from the MS to the Ph.D. to continuing education.
Journal Article

Determining Perceptual Characteristics of Automotive Interior Materials

2009-04-20
2009-01-0017
This paper presents results of a three-phase research project aimed at understanding how future automotive interior materials should be selected or designed to satisfy the needs of the customers. The first project phase involved development of 22 five-point semantic differential scales to measure visual, visual-tactile, and evaluative characteristics of the materials. Some examples of the adjective pairs used to create the semantic differential scales to measure the perceptual characteristics of the material are: a) Visual: Light vs. Dark, Flat vs. Shiny, etc., b) Visual-Tactile: Smooth vs. Rough, Slippery vs. Sticky, Compressive vs. Non-Compressive, Textured vs. Non-Textured, etc., c) Evaluative (overall perception): Dislike vs. Like, Fake vs. Genuine, Cheap vs. Expensive, etc. In the second phase, 12 younger and 12 older drivers were asked to evaluate a number of different automotive interior materials by using the 22 semantic differential scales.
Journal Article

Analysis of Trimming Processes for Advanced High Strength Steels

2008-04-14
2008-01-1446
Current die design recommendations attempt to limit the production of burrs through accurate alignment of the upper and lower edges. For common automotive exterior sheet, this translates to a gap less than 0.06mm. Unfortunately, the tolerances required by such standards often exceed the capabilities of many trim dies. The objective of the research described in this paper is to study the mechanisms of burrs generation and their impact on AHSS formability in stretch flanging. Experimental results on influence of trimming conditions on the shape of the sheared surface will be combined with the results of stretching strips after trimming.
X