Refine Your Search

Topic

Author

Search Results

Technical Paper

Assessment of In-Cylinder Thermal Barrier Coatings over a Full Vehicle Drive Cycle

2021-04-06
2021-01-0456
In-cylinder thermal barrier coatings (TBCs) have the capability to reduce fuel consumption by reducing wall heat transfer and to increase exhaust enthalpy. Low thermal conductivity, low volumetric heat capacity thermal barrier coatings tend to reduce the gas-wall temperature difference, the driving potential for heat transfer from the gas to the combustion chamber surfaces. This paper presents a coupling between an analytical methodology for multi-layer coated wall surface temperature prediction with a fully calibrated production model in a commercial system-level simulation software package (GT-Power). The wall surface temperature at each time step was calculated efficiently by convolving the engine wall response function with the time-varying surface boundary condition, i. e., in-cylinder heat flux and coolant temperature. This tool allows the wall to be treated either as spatially uniform with one set of properties, or with independent head/piston/liner components.
Technical Paper

Design of a Mild Hybrid Electric Vehicle with CAVs Capability for the MaaS Market

2020-04-14
2020-01-1437
There is significant potential for connected and autonomous vehicles to impact vehicle efficiency, fuel economy, and emissions, especially for hybrid-electric vehicles. These improvements could have large-scale impact on oil consumption and air-quality if deployed in large Mobility-as-a-Service or ride-sharing fleets. As part of the US Department of Energy's current Advanced Vehicle Technology Competition (AVCT), EcoCAR: The Mobility Challenge, Mississippi State University’s EcoCAR Team is redesigning and doing the development work necessary to convert a conventional gasoline spark-ignited 2019 Chevy Blazer into a hybrid-electric vehicle with SAE Level 2 autonomy. The target consumer segments for this effort are the Mobility-as-a-Service fleet owners, operators and riders. To accomplish this conversion, the MSU team is implementing a P4 mild hybridization strategy that is expected to result in a 30% increase in fuel economy over the stock Blazer.
Technical Paper

Autonomous Vehicles in the Cyberspace: Accelerating Testing via Computer Simulation

2018-04-03
2018-01-1078
We present an approach in which an open-source software infrastructure is used for testing the behavior of autonomous vehicles through computer simulation. This software infrastructure is called CAVE, from Connected Autonomous Vehicle Emulator. As a software platform that allows rapid, low-cost and risk-free testing of novel designs, methods and software components, CAVE accelerates and democratizes research and development activities in the field of autonomous navigation.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Technical Paper

High Resolution In-Cylinder Scalar Field Measurements during the Compression and Expansion Strokes

2013-04-08
2013-01-0567
High-resolution planar laser-induced fluorescence (PLIF) measurements were performed on the scalar field in an optical engine. The measurements were of sufficient resolution to fully resolve all of the length scales of the flow field through the full cycle. The scalar dissipation spectrum was calculated, and by fitting the results to a model turbulent spectrum the Batchelor scale of the turbulent flow was estimated. The scalar inhomogeneity was introduced by a low-momentum gas jet injection. A consistent trend was observed in all data; the Batchelor scale showed a minimum value at top dead center (TDC) and was nearly symmetric about TDC. Increasing the engine speed resulted in a decrease of the Batchelor scale, and the presence of a shroud on the intake valve, which increased the turbulence intensity, also reduced the Batchelor scale. The effect of the shrouded valve was less significant compared to the effect of engine speed.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Technical Paper

An Analysis on Time Scale Separation for Engine Simulations with Detailed Chemistry

2011-09-11
2011-24-0028
The simulation of combustion chemistry in internal combustion engines is challenging due to the need to include detailed reaction mechanisms to describe the engine physics. Computational times needed for coupling full chemistry to CFD simulations are still too computationally demanding, even when distributed computer systems are exploited. For these reasons the present paper proposes a time scale separation approach for the integration of the chemistry differential equations and applies it in an engine CFD code. The time scale separation is achieved through the estimation of a characteristic time for each of the species and the introduction of a sampling timestep, wherein the chemistry is subcycled during the overall integration. This allows explicit integration of the system to be carried out, and the step size is governed by tolerance requirements.
Technical Paper

Integration of a Continuous Multi-Component Fuel Evaporation Model with an Improved G-Equation Combustion and Detailed Chemical Kinetics Model with Application to GDI Engines

2009-04-20
2009-01-0722
A continuous multi-component fuel evaporation model has been integrated with an improved G-equation combustion and detailed chemical kinetics model. The integrated code has been successfully used to simulate a gasoline direct injection engine. In the multi-component fuel model, the theory of continuous thermodynamics is used to model the properties and composition of multi-component fuels such as gasoline. In the improved G-equation combustion model a flamelet approach based on the G-equation is used that considers multi-component fuel effects. To precisely calculate the local and instantaneous residual which has a great effect on the laminar flame speed, a “transport equation residual” model is used. A Damkohler number criterion is used to determine the combustion mode in flame containing cells.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

Ring Pack Crevice Effects on the Hydrocarbon Emissions from an Air-Cooled Utility Engine

2008-09-09
2008-32-0004
The effect of the ring pack storage mechanism on the hydrocarbon (HC) emissions from an air-cooled utility engine has been studied using a simplified ring pack model. Tests were performed for a range of engine load, two engine speeds, varied air-fuel ratio and with a fixed ignition timing using a homogeneous, pre-vaporized fuel mixture system. The integrated mass of HC leaving the crevices from the end of combustion (the crank angle that the cumulative burn fraction reached 90%) to exhaust valve closing was taken to represent the potential contribution of the ring pack to the overall HC emissions; post-oxidation in the cylinder will consume some of this mass. Time-resolved exhaust HC concentration measurements were also performed, and the instantaneous exhaust HC mass flow rate was determined using the measured exhaust and cylinder pressure.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Effects of EGR Components Along with Temperature and Equivalence Ratio on the Combustion of n-Heptane Fuel

2008-04-14
2008-01-0951
Fundamental simulations in a quiescent cell under adiabatic conditions were made to understand the effect of temperature, equivalence ratio and the components of the recirculated exhaust gas, viz., CO2 and H2O, on the combustion of n-Heptane. Simulations were made in single phase in which evaporated n-Heptane was uniformly distributed in the domain. Computations were made for two different temperatures and four different EGR levels. CO2 or H2O or N2was used as EGR. It was found that the initiation of the main combustion process was primarily determined by two competing factors, i.e., the amount of initial OH concentration in the domain and the specific heat of the mixture. Further, initial OH concentration can be controlled by the manipulating the ambient temperature in the domain, and the specific heat capacity of the mixture via the mixture composition. In addition to these, the pre combustion and the subsequent post combustion can also be controlled via the equivalence ratio.
Technical Paper

Combustion and Lift-Off Characteristics of n-Heptane Sprays Using Direct Numerical Simulations

2007-10-29
2007-01-4136
Fundamental simulations using DNS type procedures were used to investigate the ignition, combustion characteristics and the lift-off trends of a spatially evolving turbulent liquid fuel jet. In particular, the spatially evolving n-Heptane spray injected in a two-dimensional rectangular domain with an engine like environment was investigated. The computational results were compared to the experimental observations from an optical engine as reported in the literature. It was found that an initial fuel rich combustion downstream of the spray tip is followed by diffusion combustion. Investigations were also made to understand the effects of injection velocity, ambient temperature and the droplet radius on the lift-off length. For each of these parameters three different values in a given range were chosen. For both injection velocity and droplet radius, an increase resulted in a near linear increase in the lift-off length.
Technical Paper

Modeling Knock in Spark-Ignition Engines Using a G-equation Combustion Model Incorporating Detailed Chemical Kinetics

2007-04-16
2007-01-0165
In this paper, knock in a Ford single cylinder direct-injection spark-ignition (DISI) engine was modeled and investigated using the KIVA-3V code with a G-equation combustion model coupled with detailed chemical kinetics. The deflagrative turbulent flame propagation was described by the G-equation combustion model. A 22-species, 42-reaction iso-octane (iC8H18) mechanism was adopted to model the auto-ignition process of the gasoline/air/residual-gas mixture ahead of the flame front. The iso-octane mechanism was originally validated by ignition delay tests in a rapid compression machine. In this study, the mechanism was tested by comparing the simulated ignition delay time in a constant volume mesh with the values measured in a shock tube under different initial temperature, pressure and equivalence ratio conditions, and acceptable agreements were obtained.
Technical Paper

Comparison of Soot Processes Inside Turbulent Acetylene Flames under Atmospheric-Pressure Conditions

2006-04-03
2006-01-0885
Two soot-containing turbulent non-premixed flames burning gaseous acetylene in atmospheric-pressure air were investigated by conducting non-intrusive optical experiments at various flame locations. The differences in burner exit Reynolds numbers of these flames were large enough to examine the influence of flow dynamics on soot formation and evolution processes in heavily-sooting flames. By accounting for the fractal nature of aggregated primary particles (spherules), the proper interpretation of the laser scattering and extinction measurements yielded all the soot parameters of principal interest. With the separation of spherule and aggregate sizes, the axial zones of the prevailing turbulent soot mechanisms were accurately identified. With the high propensity of acetylene fuel to soot, relatively fast particle nucleation process led to high concentrations immediately above the burner exit.
Technical Paper

Determination of Flame-Front Equivalence Ratio During Stratified Combustion

2003-03-03
2003-01-0069
Combustion under stratified operating conditions in a direct-injection spark-ignition engine was investigated using simultaneous planar laser-induced fluorescence imaging of the fuel distribution (via 3-pentanone doped into the fuel) and the combustion products (via OH, which occurs naturally). The simultaneous images allow direct determination of the flame front location under highly stratified conditions where the flame, or product, location is not uniquely identified by the absence of fuel. The 3-pentanone images were quantified, and an edge detection algorithm was developed and applied to the OH data to identify the flame front position. The result was the compilation of local flame-front equivalence ratio probability density functions (PDFs) for engine operating conditions at 600 and 1200 rpm and engine loads varying from equivalence ratios of 0.89 to 0.32 with an unthrottled intake. Homogeneous conditions were used to verify the integrity of the method.
Technical Paper

Piston-Liner Crevice Geometry Effect on HCCI Combustion by Multi-Zone Analysis

2002-10-21
2002-01-2869
A multi-zone model has been developed that accurately predicts HCCI combustion and emissions. The multi-zone methodology is based on the observation that turbulence does not play a direct role on HCCI combustion. Instead, chemical kinetics dominates the process, with hotter zones reacting first, and then colder zones reacting in rapid succession. Here, the multi-zone model has been applied to analyze the effect of piston crevice geometry on HCCI combustion and emissions. Three different pistons of varying crevice size were analyzed. Crevice sizes were 0.26, 1.3 and 2.1 mm, while a constant compression ratio was maintained (17:1). The results show that the multi-zone model can predict pressure traces and heat release rates with good accuracy. Combustion efficiency is also predicted with good accuracy for all cases, with a maximum difference of 5% between experimental and numerical results.
Technical Paper

Experiments and CFD Modeling of Direct Injection Gasoline HCCI Engine Combustion

2002-06-03
2002-01-1925
The present study investigated HCCI combustion in a heavy-duty diesel engine both experimentally and numerically. The engine was equipped with a hollow-cone pressure-swirl injector using gasoline direct injection. Characteristics of HCCI combustion were obtained by very early injection with a heated intake charge. Experimental results showed an increase in NOx emission and a decrease in UHC as the injection timing was retarded. It was also found that optimization can be achieved by controlling the intake temperature together with the start-of-injection timing. The experiments were modeled by using an engine CFD code with detailed chemistry. The CHEMKIN code was implemented into KIVA-3V such that the chemistry and flow solutions were coupled. The model predicted ignition timing, cylinder pressure, and heat release rates reasonably well. The NOx emissions were found to increase as the injection timing was retarded, in agreement with experimental results.
Technical Paper

Experimental Investigation of Direct Injection-Gasoline for Premixed Compression Ignited Combustion Phasing Control

2002-03-04
2002-01-0418
A direct injection-gasoline (DI-G) system was applied to a heavy-duty diesel-type engine to study the effects of charge stratification on the performance of premixed compression ignited combustion. The effects of the fuel injection parameters on combustion phasing were of primary interest. The simultaneous effects of the fuel stratification on Unburned Hydrocarbon (UHC), Oxides of Nitrogen (NOx), Carbon Monoxide (CO), and smoke emissions were also measured. Engine tests were conducted with altered injection parameters covering the entire load range of normally aspirated Homogeneous Charge Compression Ignited (HCCI) combustion. Combustion phasing tests were also conducted at several engine speeds to evaluate its effects on a fuel stratification strategy.
X