Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Investigation on the Mechanical Properties of Date Seed and Neem Gum Powder Added Natural Composites

2024-02-23
2023-01-5150
The experimental investigation aims to improve natural composite materials aligned with feasible development principles. These composites can be exploited across several industries, including the automobile and biomedical sectors. This research employs date seed powder and neem gum powder as reinforcing agents, along with polyester resin as the base material. The fabrication route comprises compression moulding, causing the production of the natural composite material. This study focuses extensively on mechanical characteristics such as tensile strength, flexural strength, hardness, and impact resistance to undergo comprehensive testing. Furthermore, the chemical properties of the composites are examined using the FTIR test to gain understanding by integrating different proportions of date seed powder (5%, 10%, 15%, and 20%) and neem gum powder (0%, 3%, 6%, and 9%) in the matrix phase.
Technical Paper

Design Improvement of an Automotive Shock Absorber Component Subjected to Fretting Fatigue

2023-11-10
2023-28-0157
A shock absorber endurance test for an automobile that was supposed to resist at least 200,000 load cycles but failed to meet the statutory fatigue limit was under examination. This is due to the breakdown of the assembly that holds the shock absorber shims. This failure occurred due to Fretting fatigue. A design improvement is being introduced to avoid fretting fatigue on the shock absorber shim assembly. FEA is used to investigate the shim assembly in order to locate the stress zone. After adding more shims to the piston, fatigue life was significantly improved. The damping forces were unaffected by the fundamental solution that was applied to make this improvement.
Technical Paper

Modeling and Analysis of Motorcycle Assembly for Dynamic Investigation

2023-11-10
2023-28-0117
“The purpose of this study is to explore the structural behavior of motorcycle frames that are fabricated from metals such as steel and aluminum, and that are welded together to generate beams. The components of the wheel, handlebar, and saddle are assembled together to form the chassis of the bicycle. For the purpose of determining modal characteristics such natural frequencies and mode shapes, two different analytical approaches, namely finite element analysis (FEA) and experimental modal analysis (EMA), were utilized. The framework of the chassis was design in 3D using CAD software to carry out the FEA, and after specifying the meshing type and material parameters, normal mode analysis was carried out. To contrast modal characteristics with FEA results, EMA utilized impact hammer testing with a roving accelerometer approach.
Technical Paper

Influence of Various Parameters of Turning Low Carbon Steel with M2 HSS Tool Using Minimum Quantity Lubrication

2022-12-23
2022-28-0533
Turning is a widely used manufacturing process in mechanical machining industries, while the cost associated with this process is high due to the cost involved in changing tools or tool regrinding. All the parameters of turning, like feed rate, cutting speed, and depth of cut, substantially impact the tool wear, which subsequently reduces tool life. Cooling methods like flooding, Minimum Quantity Lubrication (MQL), etc., are incorporated to minimise these effects on the tool and workpiece interface. When using these cooling techniques, the process parameters involved play vital roles in increasing the effectiveness. This paper focuses on the effects of machining parameters on the tool and the workpiece quality. Experiments were conducted to study the impact of various input parameters of the turning process on the tool tip temperature, cutting forces, and tool wear, ultimately affecting the tool's life.
Technical Paper

Determination of Optimal Gear Ratio of BAJA SAE All-Terrain Vehicle

2021-02-25
2021-01-5033
The final drivetrain ratio is an essential part of a vehicle. It is responsible for providing the desired torque to overcome obstacles while maintaining the speed and acceleration of a vehicle. A vehicle must have an optimum gear ratio to obtain the desired velocity and acceleration. To achieve this, four different approaches were used considering the input parameters of a BAJA All-Terrain Vehicle (ATV). The traction received from the ground is calculated and plotted against velocity on different terrains. Further, a drivetrain was modeled in Simulink to obtain different parameters like vehicle speed, acceleration, and wheel slip. A range of gear ratios was obtained by following a similar trend of vehicle parameters that were best suited for improving vehicle performance. Graphs were plotted to compare the effect of various vehicle parameters, and an optimum gear ratio was obtained.
Technical Paper

Electromagnetic Analysis of Permanent Magnet Brushed DC Motor for Automotive Applications—Part 1

2021-02-11
2021-01-5001
Permanent magnet brushed DC (PMBDC) motors are mostly preferred in many automotive applications because of better power density and easier control. Five different automotive applications such as electric parking brake (EPB), power seat, power window, sunroof drive, and tire air pump are chosen and discussed in this paper. A step-by-step electromagnetic analysis is carried out for all the designed models. Low-cost ferrite-based magnets are used for cost reduction keeping the efficiency as high above 77% in all the models. Comparison on performance and cost are discussed in the conclusion section.
Technical Paper

Braking System for ATV

2020-10-05
2020-01-1611
Design and simulation analysis of braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, structural, thermal, computational flow dynamics, vibrational & fatigue behavior of ventilated brake disc rotor, hub and upright are analyzed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analyzed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analyzed from their characteristics plot. Vibrational behavior, structural behavior, thermal behavior, performance efficiency, flow behavior of ventilated disc brake rotor can be easily depicted with respect to bump and droop during acceleration, high climb and maneuverability. Ventilated disc brake Rotor with outer diameter of 220 mm is used.
Technical Paper

Topology Optimisation of Brake Caliper

2020-10-05
2020-01-1620
The objective of the research is to develop a lightweight yet stiff, 2 piston fixed brake caliper which can be used in formula student race car. To make a race car, its components need to be lighter. To stop a car with minimum stopping distance, it needs to have a sophisticated braking system with well-designed components. The designing of the caliper is carried out on the Altair Inspire software. The topology optimisation algorithm is used to minimise the weight of the caliper without compromising the stiffness. The structural analysis is also carried out on the Altair Inspire. The caliper is also tested for fatigue failure using Ansys.
Technical Paper

Studies on Metallurgical and Mechanical Properties of Plasma Arc Welded Aerospace 80A Grade Alloy

2020-09-25
2020-28-0466
The current research work scrutinized the influence of plasma arc in the metallurgical and mechanical behavior of Nimonic 80A weldment. Defect free weld bead of 6 mm thickness was achieved in a single pass through plasma arc welding. The microstructure of weldment is decorated with cellular dendritic structure at the center and at the weld interface region columnar dendritic structure was observed. Metallurgical analysis showed the Cr and Ti secondary precipitates in the interdendritic region of the WZ. The existence of M23C6 and Cr2Ti were observed through the X-ray diffraction analysis. Both tensile test and microhardness test were conducted to study the mechanical properties of weldment. The result concluded that both the strength and ductility inferior than base metal and the hardness of the weld bead is similar to that of BMl.
Technical Paper

Investigations on Computational Meshing Techniques of FSAE Space Frame Chassis

2020-09-02
2020-01-5081
The FSAE is a world-renowned competition, in which students from across the globe compete against each other. The chassis is the main framework of the car, which is inherently responsible for accommodating all the components. The chassis is broadly classified into two types—monocoque and spaceframe. The FSAE chassis is of spaceframe type. The chassis also provides structural rigidity to the body of the car. It was observed through literature study that very minimal amount of research has been done on analyzing and validating the chassis by applying the different meshing techniques, namely 1D, 2D, and 3D. The mesh quality is very essential to obtain precise results and hence, effective methods for creating the mesh have been dealt with in this article. This study is on new investigations on different meshing techniques that can be implemented on an FSAE chassis.
Technical Paper

Frontal Crash Worthiness Performance of Bi-Tubular Corrugated Conical: Structures under Axial Loads at Low Velocity

2020-04-14
2020-01-0983
Vehicle collisions are a major concern in the modern automotive industry. To ensure the passenger safety, major focus has been given on energy absorption pattern on the crumple zone during collision, which lead to the implementation of new design of the crash box for low speed collision. The main aim of this research is optimization of the conical shaped structure based on its mean diameter, graded thickness and semi apical angle. Further, to decrease initial peak load of the conical crash box, corrugations are integrated on structure and optimized based on different parameters, such as number of corrugations, pattern of corrugation relative to both tubes and amplitude of corrugation. The concept of bi-tubular structure is proposed to improve both specific energy absorption and initial peak load during crash event. A finite element model is created to perform parametric study on corrugated conical tube based on axial load conditions at low velocity.
Technical Paper

Design and Fabrication of Carbon Fibre/Epoxy-Aluminum Hybrid Suspension Control Arms for Formula SAE Race Cars

2020-04-14
2020-01-0230
Suspension system of a vehicle plays an important role to carefully control motion of the wheel throughout the travel. The vertical and the lateral dynamics (ride and handling) is affected by the unsprung-to-sprung mass ratio. Lower value of this mass ratio leads to enhanced performance of the car. To optimize the unsprung mass of the car, design of control arm plate is optimized with Aluminum material and Carbon fibre reinforced composite control arms framework are used to achieve high stiffness to weight ratio. These leads to increase in overall power to weight ratio of the car which helps to deliver maximum performance to the wheels. Through analysis of real-life working conditions of the entire steering knuckle assembly in ACP pre- post ANSYS 18.1 with the defined boundary conditions, equivalent stress and total deformations are obtained. Based on the results, geometrical topology of the control arms plates is further optimized.
Technical Paper

Investigations on Dimensional Analysis of Fused Filament Fabrication of Wax Filament by Taguchi Design

2019-10-11
2019-28-0133
Experimental investigations were carried out on the machinable wax filament using the fused deposition modelling (FDM) rapid prototyping process. The printer used for conducting the experiments was Flash Forge guider 2. The filament material used for this study was machinable wax filament of 1.75 mm diameter. Experimental trials were carried out as per Taguchi L9 orthogonal array to determine the optimum process parameter combination. The dimensional analysis of test samples were carried out in terms of change in volume of samples which is result of combine effect of deviations in all the dimensions of test sample. Four factors each at three levels was used to obtain the optimum printing parameters for better dimensional accuracy and proper printing. The four important printing parameters were taken as factor and set to analyse the significant factor affecting on printing. The complexity in printing of wax filament is taken in to consideration during the experimental study.
Technical Paper

Mechanical and Corrosion Behaviour of Al 7075 Composite Reinforced with TiC and Al2O3 Particles

2019-10-11
2019-28-0094
Various research regarding new types of fabrication and modifications of Aluminium alloy to improve the existing properties are going on. The wide range application of aluminium alloy is in aerospace and Automobile Industries. The demand for this material improved by mechanical properties with little to zero increment in weight. The current work is based on the fabrication of hybrid aluminium metal matrix composites with the addition of TiC (Titanium Carbide) and Al2O3 (Aluminium Oxide) reinforcement particle using stir casting technique. Three types of hybrid composite samples were prepared based on the weight percentage 5% Al2O3+0% TiC (sample-1), 8% Al2O3 + 12% TiC (sample-2), 20% Al2O3+15% TiC (sample-3). The objective of the study is to analyze the mechanical and corrosion properties of the hybrid composite with the influence of the reinforcement and varying the weight fraction of the particles.
Technical Paper

Stress and Model Analysis of Upper and Lower Bolster Components of Molten Steel Transfer Vehicle

2019-10-11
2019-28-0119
The transportation of hot metal from blast furnaces to melting shops is carried out by molten steel transfer vehicle such as Torpedo ladle car in the steel plants. In need to design Torpedo ladle car within size limitation, capacity requirement and withstanding the impact, static, thermal shock and abrasion conditions, structural analysis is essential for validation. In this paper, stress and model analysis for upper and lower bolsters of Torpedo Ladle Car is carried out. The components are modelled in CAD and analysed using finite element method using software with the required boundary conditions. The results of structural analysis of bolster components are presented and discussed. The results shows that the deflection at the centre of upper and lower bolster was due to bending and applied load. The modal analysis predicted the natural frequencies by using block lanczos method.
Technical Paper

Machinability and Parametric Optimization of Inconel 600 Using Taguchi-Desirability Analysis under Dry Environment

2019-10-11
2019-28-0068
Inconel 600 is a face-centered cubic structure and nickel-chromium alloy. Alloy 600 has good resistance to oxidation, corrosion-resistant, excellent mechanical properties, and good creep rupture strength at a higher temperature. Alloy 600 is used in heat treating, phenol condensers, chemical and food processing, soap manufacture, vegetable, and fatty acid vessels. In this context, the present paper investigates the machinability characteristics of Alloy 600 under dry environment. Also, the parametric effect of cutting speed, feed rate, and cutting depth on the force, surface roughness, and tool wear is carried out using 3-Dimensional surface and 1-Dimensional plots. The optimal parameters are determined systematically based on Taguchi-desirability analysis with turned with TiAlN coated carbide insert. From the graphical analysis of collected data, the low rate of feed and moderate cutting for roughness and cutting force and average feed rate for tool wear with low cutting depth.
Technical Paper

Investigation of Machinability Characteristics and Chip Morphology on Inconel 718: Dry and MQL

2019-10-11
2019-28-0066
Inconel 718 has excellent material properties, corrosion, and oxidation property among the nickel based superalloy. This property makes it suitable for producing components operating under extreme environments subjected to pressure and heat. The present study aims to examine the machinability comparison under dry and MQL turning of Inconel 718. The secondary aim is to report the sustainable machining on Inconel 718. Dry and MQL (Minimum Quantity Lubrication) experiments are carried out on Inconel 718 alloy based on Taguchi’s designed L16 orthogonal array. The cutting tools are an advanced coated cutting tool and uncoated tool. The levels of turning parameters are varied at 70, 120, 170 and 220 m/min of turning speed, 0.1, 0.15, 0.2 and 0.25 mm/rev of feed rate and 0.3, 0.4, 0.5 and 0.6 mm of cutting depth. The cutting forces, surface roughness, flank wear, and chip morphology are taken for the current investigation. The factor effect on output responses is studied using 2D plots.
Technical Paper

Turning of Inconel 825 with Coated Carbide Tool Applying Vegetable-Based Cutting Fluid Mixed with CuO, Al2O3 and CNT Nanoparticles by MQL

2019-10-11
2019-28-0060
Inconel 825 is nickel (Ni)-iron (Fe)-chromium (Cr) alloy with additions of copper (Cu), molybdenum (Mo), and titanium (Ti). The alloy has excellent resistance to corrosion and is often the most cost-effective alloy in sulphuric acid piping vessels and chemical process equipment. No attempt of applying MQL with three nanofluids was reported conferring to the works accessed. The present study is focused on evaluating the effect of the addition of three nanoparticles (CuO, Al2O3, and CNT) in vegetable oil applied by MQL mode during turning of Inconel 825 with coated carbide tool. Cutting force, surface roughness, and tool wear are evaluated. The results showed that the addition of nCNT substantially improved the machining performance and smaller flank the tool edge, while the adhesion and abrasion are observed as wear mechanism and better results are obtained at 0.5% of nCNT+ vegetable oil to produce the lowest values.
Technical Paper

Parameter Optimization during Minimum Quantity Lubrication Turning of Inconel 625 Alloy with CUO, Al2O3 and CNT Nanoparticles Dispersed Vegetable-Oil-Based Cutting Fluid

2019-10-11
2019-28-0061
Inconel 625, nickel based alloy, is found in gas turbine blades, seals, rings, shafts, and turbine disks. On the other hand, the manufacturing of this alloy is challenging, mainly when machining processes are used due to excellent mechanical properties. Application of nanofluids in minimum quantity lubrication (MQL) shows gaining importance in the machining process, which is economical and eco-friendly. The principal objective of this investigational work is to study the influence of three types of nanofluids in the MQL turning of Inconel 625 nickel based alloys. The used nanofluids are multi-walled carbon nanotubes (CNT), alumina (Al2O3) and copper oxide (CUO) dispersed in vegetable oil. Taguchi-based L27 orthogonal array is used for the experimental design. The parameter optimization of design variables over response is carried out by the use of Taguchi-based derringer's desirability function.
Technical Paper

Investigation of Machinability Characteristics on Turning of Nimonic 90A Using Al2O3 and CNT Nanoparticle in Groundnut Oil

2019-10-11
2019-28-0072
Nimonic 90A alloy is a nickel-chromium-cobalt alloy and found as a potential material for turbine blades, discs, forgings, a ring section, and hot-working tools. This paper presents the effect of concentration along with cutting speed and feed rate on Fz: cutting force, Ra: surface roughness and Vba: tool wear with the application of two different nanofluids (NFS) on turning of Nimonic 90A by TiAlN PVD carbide cutting inserts. The nanoparticles suspended in oil taken for present investigation are nAl2O3, nCNT, and groundnut oil. The Taguchi L9 orthogonal array and derringer’s desirability response surface has been employed for parameter design and optimal search. 3D surface plots, factor effect plots, Taguchi S/N, and variance tests are used to study the effect of concentration on the machining performance of Nimonic 90A. The statistical analysis revealed % concentration for nCNT and cutting speed for nAl2O3 are found as an influenced parameter on performance characteristics.
X