Refine Your Search

Topic

Author

Search Results

Technical Paper

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading

2016-11-07
2016-22-0004
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
Technical Paper

Development of Brain Injury Criteria (BrIC)

2013-11-11
2013-22-0010
Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models.
Technical Paper

Response of PMHS to High- and Low-Speed Oblique and Lateral Pneumatic Ram Impacts

2011-11-07
2011-22-0011
In ISO Technical Report 9790 (1999) normalized lateral and oblique thoracic force-time responses of PMHS subjected to blunt pendulum impacts at 4.3 m/s were deemed sufficiently similar to be grouped together in a single biomechanical response corridor. Shaw et al., (2006) presented results of paired oblique and lateral thoracic pneumatic ram impact tests to opposite sides of seven PMHS at sub-injurious speed (2.5 m/s). Normalized responses showed that oblique impacts resulted in more deflection and less force, whereas lateral impacts resulted in less deflection and more force. This study presents results of oblique and lateral thoracic impacts to PMHS at higher speeds (4.5 and 5.5 m/s) to assess whether lateral relative to oblique responses are different as observed by Shaw et al., or similar as observed by ISO.
Technical Paper

Rear Seat Occupant Safety: An Investigation of a Progressive Force-Limiting, Pretensioning 3-Point Belt System Using Adult PMHS in Frontal Sled Tests

2009-11-02
2009-22-0002
Rear seat adult occupant protection is receiving increased attention from the automotive safety community. Recent anthropomorphic test device (ATD) studies have suggested that it may be possible to improve kinematics and reduce injuries to rear seat occupants in frontal collisions by incorporating shoulder-belt force-limiting and pretensioning (FL+PT) technologies into rear seat 3-point belt restraints. This study seeks to further investigate the feasibility and potential kinematic benefits of a FL+PT rear seat, 3-point belt restraint system in a series of 48 kmh frontal impact sled tests (20 g, 80 ms sled acceleration pulse) performed with post mortem human surrogates (PMHS). Three PMHS were tested with a 3-point belt restraint with a progressive (two-stage) force limiting and pretensioning retractor in a sled buck representing the rear seat occupant environment of a 2004 mid-sized sedan.
Journal Article

Pedestrian Lower Extremity Response and Injury: A Small Sedan vs. A Large Sport Utility Vehicle

2008-04-14
2008-01-1245
Vehicle front-end geometry and stiffness characteristics have been shown to influence pedestrian lower extremity response and injury patterns. The goal of this study is to compare the lower extremity response and injuries of post mortem human surrogates (PMHS) tested in full-scale vehicle-pedestrian impact experiments with a small sedan and a large sport utility vehicle (SUV). The pelves and lower limbs of six PMHS were instrumented with six-degree-of-freedom instrumentation packages. The PMHS were then positioned laterally in mid-stance gait and subjected to vehicle impact at 40 km/h with either a small sedan (n=3) or a large SUV (n=3). Detailed descriptions of the pelvic and lower extremity injuries are presented in conjunction with global and local kinematics data and high speed video images. Injured PMHS knee joints reached peak lateral bending angles between 25 and 85 degrees (exceeding published injury criteria) at bending rates between 1.1 deg/ms and 3.7 deg/ms.
Journal Article

Preliminary Evaluation Methodology in Front-Front Vehicle Compatibility

2008-04-14
2008-01-0814
The injury outcome of a front-front two-vehicle crash will be a function of crash-specific, vehicle-specific, and occupant-specific parameters. This paper focuses on a preliminary methodology that was used to evaluate the potential for benefits in making vehicle-specific changes to improve the compatibility of light vehicles across the fleet. In particular, the effect on injury rates of matching vehicle frontal stiffness was estimated. The front-front crash data for belted drivers in the lighter vehicles in the crash from ten years of NASS-CDS data were examined. The frontal stiffness of each vehicle was calculated using data taken during full frontal rigid barrier tests for the U.S. New Car Assessment Program (NCAP), and only crashes coded in the CDS as “no override” were considered.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Restraint Robustness in Frontal Crashes

2007-04-16
2007-01-1181
The protection of a vehicle occupant in a frontal crash is a combination of vehicle front structural design and occupant restraint design. Once chosen and manufactured, these design features must interact with a wide variety of structural characteristics in potential crash partners. If robust, the restraint design will provide a high level of protection for a wide variety of crash conditions. This paper examines how robust a given restraint system is for occupant self-protection and how frontal design can improve the restraint performance of potential crash partners, thus improving their restraint robustness as well. To examine restraint robustness in self protection, the effect of various vehicle deceleration characteristics on occupant injury potential is investigated for a given restraint design. A MADYMO model of a 1996 Taurus interior and its restraint system with a Hybrid III 50th percentile male dummy are simulated and subjected to 650 crash pulses taken during 25 years of U.S.
Technical Paper

Exploratory Analysis of Pre-Crash Sensing Countermeasures

2006-04-03
2006-01-1438
This paper presents results from an exploratory analysis of pre-crash sensing countermeasures. This analysis consists of a technology review, development of a methodology to estimate safety benefits based on the total harm concept, identification of crashworthiness scenarios and their harm units, and estimation of safety benefits for brake assist and driver seat position adjustment. Using 1996-2003 Crashworthiness Data System databases, crashworthiness scenarios and harm units of passenger cars are identified from a crash analysis of all single event frontal impacts by combining codes from six variables: frontal impact offset, air bag deployment, seat belt use, driver weight, seat track position, and Delta V. Preliminary results show that brake assist and driver seat position adjustment have the potential to reduce the total harm of passenger cars involved in rear-end crashes.
Technical Paper

Performance of a Rear-End Crash Avoidance System in a Field Operational Test

2006-04-03
2006-01-0573
This paper characterizes the capability of a rear-end crash avoidance system based on data collected from a field operational test. The system performs forward crash warning and adaptive cruise control functions. The test consists of 66 subjects who drove 10 equipped vehicles on public roads over 157,000 km. System characterization addresses the ability of the forward-looking sensor suite to maintain in-path target tracking and discern between in-path and out-of-path targets; the efficacy of the alert logic in warning the driver to driving conflicts that may lead to rear-end crashes; and the visibility, audibility, and readability of information displayed by the driver-vehicle interface.
Technical Paper

NHTSA's Frontal Offset Research Program

2004-03-08
2004-01-1169
The National Highway Traffic Safety Administration (NHTSA) is conducting a research program to investigate the use of the 40 percent offset deformable barrier (ODB) crash test procedure to reduce death and injury, in particular debilitating lower extremity injuries in frontal offset collisions. This paper presents the results of 22 ODB crash tests conducted with 50th percentile male and 5th percentile female Hybrid III (HIII) dummies fitted with advanced lower legs, Thor-Lx/HIIIr and Thor-FLx/HIIIr, to assess the potential for debilitating and costly lower limb injuries. This paper also begins to investigate the implications that the ODB test procedure may have for fleet compatibility by evaluating the results from vehicle-to-vehicle crash tests.
Technical Paper

Crash Severity: A Comparison of Event Data Recorder Measurements with Accident Reconstruction Estimates

2004-03-08
2004-01-1194
The primary description of crash severity in most accident databases is vehicle delta-V. Delta-V has been traditionally estimated through accident reconstruction techniques using computer codes, e.g. Crash3 and WinSmash. Unfortunately, delta-V is notoriously difficult to estimate in many types of collisions including sideswipes, collisions with narrow objects, angled side impacts, and rollovers. Indeed, approximately 40% of all delta-V estimates for inspected vehicles in the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) 2001 are reported as unknown. The Event Data Recorders (EDRs), now being installed as standard equipment by several automakers, have the potential to provide an independent measurement of crash severity which avoids many of the difficulties of accident reconstruction techniques. This paper evaluates the feasibility of replacing delta-V estimates from accident reconstruction with the delta-V recorded by EDRs.
Technical Paper

On the Development of the SIMon Finite Element Head Model

2003-10-27
2003-22-0007
The SIMon (Simulated Injury Monitor) software package is being developed to advance the interpretation of injury mechanisms based on kinematic and kinetic data measured in the advanced anthropomorphic test dummy (AATD) and applying the measured dummy response to the human mathematical models imbedded in SIMon. The human finite element head model (FEHM) within the SIMon environment is presented in this paper. Three-dimensional head kinematic data in the form of either a nine accelerometer array or three linear CG head accelerations combined with three angular velocities serves as an input to the model. Three injury metrics are calculated: Cumulative strain damage measure (CSDM) – a correlate for diffuse axonal injury (DAI); Dilatational damage measure (DDM) – to estimate the potential for contusions; and Relative motion damage measure (RMDM) – a correlate for acute subdural hematoma (ASDH).
Technical Paper

Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy with Rib Extensions (ES-2re)

2003-10-27
2003-22-0010
Forty-two side impact cadaver sled tests were conducted at 24 and 32 km/h impact speeds into rigid and padded walls. The post-mortem human subjects were instrumented with accelerometers on the ribs and spine and chest bands around the thorax and abdomen to characterize their mechanical response during the impact. Load cells at the wall measured the impact force at the level of the thorax, abdomen, pelvis, and lower extremities. The resulting injuries were determined through detailed autopsy and radiography. Rib fractures with or without associated hemo/pneumo thorax or flail chest were the most common injury with severity ranging from AIS=0 to 5. Full and half thorax deflections were computed from the chest band data. The cadaver test data was analyzed using ANOVA and logistic regression. The age of the subject at the time of death had influence on injury outcome while gender and mass of the subject had little or no influence on injury outcome.
Technical Paper

Characterizing the Capability of a Rear-End Crash Avoidance System

2003-06-23
2003-01-2262
This paper presents a framework to characterize the capability of an automotive rear-end crash avoidance system that integrates forward crash warning and adaptive cruise control functionalities. This system characterization describes the operational performance of the system and its main components in the driving environment, based on data to be collected from instrumented vehicles driven by volunteer subjects as their own vehicles under real-world conditions. This characterization is pursuing a number of objectives dealing with the capability of system components including the forward-looking sensor suite, alert logic, automatic vehicle controls, and driver-vehicle interface. A number of subobjectives and concomitant measures are delineated. Examples are provided to illustrate the analysis process of this framework based on data recently collected from system verification tests.
Technical Paper

An Experimental Examination of Double Lane Change Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover

2003-03-03
2003-01-1009
Phase IV of the National Highway Traffic Safety Administration's (NHTSA) rollover research program was performed during the spring through fall of 2001. The objective of this phase was to obtain the data needed to select a limited set of maneuvers capable of assessing light vehicle rollover resistance. Five Characterization maneuvers and eight Rollover Resistance maneuvers were evaluated [1]. This paper is “Volume 2” of a two-paper account of the research used to develop dynamic maneuver tests for rollover resistance ratings. Test procedures and results from four Rollover Resistance maneuvers are presented. The Consumers Union Short Course (CUSC), ISO 3888 Part 2, Ford Path Corrected Limit Lane Change (PCL LC), and Open-Loop Pseudo Double Lane Changes are discussed. Details regarding the NHTSA J-Turn, and the three fishhook maneuvers are available in “Volume 1” [2].
Technical Paper

An Experimental Examination of J-Turn and Fishhook Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover

2003-03-03
2003-01-1008
Phase IV of the National Highway Traffic Safety Administration's (NHTSA) rollover research program was performed in 2001, starting in the spring and continuing through the fall. The objective of this phase was to obtain the data needed to select a limited set of maneuvers capable of assessing light vehicle rollover resistance. Five Characterization maneuvers and eight Rollover Resistance maneuvers were evaluated [1]. This paper is “Volume 1” of a two-paper account of the research used to develop dynamic maneuver tests for rollover resistance ratings. Test procedures and results from one Characterization maneuver (the Slowly Increasing Steer maneuver) and four Rollover Resistance maneuvers are discussed (the NHTSA J-Turn, Fishhook 1a, Fishhook 1b, and Nissan Fishhook). Details regarding NHTSA's assessment of the Consumers Union Short Course (CUSC), ISO 3888 Part 2, Ford Path Corrected Limit Lane Change (PCL LC), and Open-Loop Pseudo Double Lane Changes are available in “Volume 2” [2].
Technical Paper

Analysis of Braking and Steering Performance in Car-Following Scenarios

2003-03-03
2003-01-0283
This paper presents recent results of on-going research to build new maps of driver performance in car-following situations. The novel performance map is comprised of four driving states: low risk, conflict, near crash, and crash imminent - which correspond to advisory warning, crash imminent warning, and crash mitigation countermeasures. The paper addresses two questions dealing with the approach to quantify the boundaries between the driving states: (1) Do the quantified boundaries strongly depend on the dynamic scenario encountered in the driving environment? and (2) Do the quantified boundaries vary between steering and braking driver responses? Specifically, braking and steering driver performances are examined in two car-following scenarios: lead vehicle stopped and lead vehicle moving at lower constant speed.
Technical Paper

Identification of Traffic States From Onboard Vehicle Sensors

2003-03-03
2003-01-0535
This paper describes an algorithm that identifies the state of traffic ahead of a moving vehicle using onboard sensors. This algorithm approximates the level of service as defined in the Highway Capacity Manual, which portrays a range of traffic conditions on a particular type of roadway facility. The traffic state forms an independent variable in an evaluation plan to assess the benefits and capability of an automotive rear-end crash avoidance system in a field operational test. The algorithm utilizes inputs from vehicle sensors, onboard radar, global positioning system, and digital map to classify the traffic ahead into light, medium, and heavy states. Basically, the algorithm segregates the roadway into four different categories based on the road type (freeway or non-freeway), posted speed limit, and traffic flow conditions.
Technical Paper

Effects of Outriggers on Dynamic Rollover Resistance Maneuvers - Results from Phase V of NHTSA's Light Vehicle Rollover Research Program

2003-03-03
2003-01-1011
This paper describes the National Highway Traffic Safety Administration's (NHTSA) efforts to determine how different outrigger designs can affect J-Turn and Road Edge Recovery test maneuver outcome. Data were collected during tests performed with three different outrigger designs (made from aluminum, carbon fiber, and titanium) having different physical properties (geometry and weight). Four sport utility vehicles were tested: a 2001 Chevrolet Blazer, 2001 Toyota 4Runner, 2001 Ford Escape, and a 1999 Mercedes ML320. The 4Runner and ML320 were each equipped with electronic stability control, however the systems were disabled for the tests performed in this study. A detailed description of the testing performed and the results obtained are discussed. From the results, a comparison of how the three outrigger designs affected the test results is provided.
X