Refine Your Search

Topic

Search Results

Technical Paper

ECU-Less: State of the Art

2023-04-11
2023-01-0916
Most OEMs are shifting their strategy and way of thinking regarding ECUs. This, in combination with the electrification of vehicles and the shift towards software-based companies (car as a device), implies one of the biggest paradigm changes in automotive history. On the other hand, despite the current struggles, remarkable advances have been made in electronic technology during the past few years. These developments have opened a door to very promising enabling technology, with exterior lighting as a main target market. These circumstances seem to have created a perfect storm leading to new strategies for electronic control and driving for (front and rear) exterior lighting. We, at our company, have investigated the enabling technology, challenges, and benefits of this emerging exterior lighting approach, that we call ‘ECU-Less’.
Technical Paper

Novel Modelling Techniques of the Evolution of the Brake Friction in Disc Brakes for Automotive Applications

2020-10-05
2020-01-1621
The aim of the presented research is to propose and benchmark two brake models, namely the novel dynamic ILVO (Ilmenau-Volvo) model and a neural-network based regression. These can estimate the evolution of the brake friction between pad and disc under different load conditions, which are typically experienced in vehicle applications. The research also aims improving the knowledge of the underlying mechanism related to the evolution of the BLFC (boundary layer friction coefficient), the reliability of virtual environment simulations to speed up the product development time and reducing the amount of vehicle test in later phases and finally improving brake control functions. With the support of extensive brake dynamometer testing, the proposed models are benchmarked against State-of-the-Art. Both approaches are parametrized to render the friction coefficient dynamics with respect to the same input parameters.
Technical Paper

CAE Support to Vehicle Audio Installation Issues

2020-09-30
2020-01-1575
Audio CAE is an emerging area of interest for vehicle OEMs. Questions regarding early stages of the vehicle design, like choosing the possible positions for speakers, deciding the installation details that can influence the visual design, and integration of the low frequency speakers with the body & closures structure, are of interest. Therefore, at VCC, the development of the CAE methodology for audio applications has been undertaken. The key to all CAE applications is the loudspeaker model made available in the vibro-acoustic software used within the company. Such a model has been developed, implemented and verified in different frequency ranges and different applications. The applications can be divided into the low frequency ones (concerning the installation of woofers and subwoofers), and the middle/high frequency ones (concerning the installation of midrange and tweeter speakers). In the case of the woofer, it is the interaction with the body vibration that is of interest.
Technical Paper

Battery Parameter Estimation from Recorded Fleet Data

2016-10-17
2016-01-2360
Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
Technical Paper

Surface Flow Visualization on a Full-Scale Passenger Car with Quantitative Tuft Image Processing

2016-04-05
2016-01-1582
Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
Technical Paper

Improving Subjective Assessment of Vehicle Dynamics Evaluations by means of Computer-Tablets as Digital Aid

2016-04-05
2016-01-1629
Vehicle dynamics development relies on subjective assessments (SA), which is a resource-intensive procedure requiring both expert drivers and vehicles. Furthermore, development projects becoming shorter and more complex, and increasing demands on quality require higher efficiency. Most research in this area has focused on moving from physical to virtual testing. However, SA remains the central method. Less attention has been given to provide better tools for the SA process itself. One promising approach is to introduce computer-tablets to aid data collection, which has proven to be useful in medical studies. Simple software solutions can eliminate the need to transcribe data and generate more flexible and better maintainable questionnaires. Tablets’ technical features envision promising enhancements of SA, which also enable better correlations to objective metrics, a requirement to improve CAE evaluations.
Technical Paper

Organic Evolution of Development Organizations - An Experience Report

2016-04-05
2016-01-0028
In areas such as Active Safety, new technologies, designs (e.g. AUTOSAR) and methods are introduced at a rapid pace. To address the new demands, and also requirements on Functional Safety imposed by ISO 26262, the support for engineering methods, including tools and data management, needs to evolve as well. Generic and file-based data management tools, like spreadsheet tools, are popular in the industry due to their flexibility and legacy in the industry but provide poor control and traceability, while rigid and special-purpose tools provide structure and control of data but with limited evolvability. As organizations become agile, the need for flexible data management increases. Since products become more complex and developed in larger and distributed teams, the need for more unified, controlled, and consistent data increases.
Technical Paper

Experimental and Numerical Investigations of the Base Wake on an SUV

2013-04-08
2013-01-0464
With the increase in fuel prices and the increasingly strict environmental legislations regarding CO₂ emissions, reduction of the total energy consumption of our society becomes more important. Passenger vehicles are partly responsible for this consumption due to their strong presence in the daily life of most people. Therefore reducing the impact of cars on the environment can assist in decreasing the overall energy consumption. Even though several fields have an impact on a passenger car's performance, this paper will focus on the aerodynamic part and more specifically, the wake behind a vehicle. By definition a car is a bluff body on which the air resistance is for the most part driven by pressure drag. This is caused by the wake these bodies create. Therefore analyzing the wake characteristics behind a vehicle is crucial if one would like to reduce drag.
Technical Paper

Severe Frontal Collisions with Partial Overlap - Two Decades of Car Safety Development

2013-04-08
2013-01-0759
Frontal Severe Partial Overlap Collisions (SPOC) also called small overlap crashes pose special challenges with respect to structural design as well as occupant protection. In the early 1990s, the SPOC test method was developed addressing 20-40% overlap against a fixed rigid barrier with initial velocities up to 65 km/h. The knowledge gained has been used in the design of Volvo vehicles since then. Important design principles include front side members orientated along the wheel envelopes together with a strong support structure utilizing a space frame principle with beams loaded mainly in tension and compression. This novel setup was first introduced in the 850-model in 1991 and has been refined and patented (2001) in later Volvo front structures. Among the design principles are multiple front side members on each side, helping energy absorption efficiency and robustness.
Technical Paper

Development of Acoustic Models for High Frequency Resonators for Turbocharged IC-Engines

2012-06-13
2012-01-1559
Automotive turbo compressors generate high frequency noise in the air intake system. This sound generation is of importance for the perceived sound quality of luxury cars and may need to be controlled by the use of silencers. The silencers usually contain resonators with slits, perforates and cavities. The purpose of the present work is to develop acoustic models for these resonators where relevant effects such as the effect of a realistic mean flow on losses and 3D effects are considered. An experimental campaign has been performed where the two-port matrices and transmission loss of sample resonators have been measured without flow and for two different mean flow speeds. Models for two resonators have been developed using 1D linear acoustic theory and a FEM code (COMSOL Multi-physics). For some resonators a separate linear 1D Matlab code has also been developed.
Technical Paper

Acoustic One-Dimensional Compressor Model for Integration in a Gas-Dynamic Code

2012-04-16
2012-01-0834
An acoustic one-dimensional compressor model has been developed. This model is based on compressor map information and it is able to predict how the pressure waves are transmitted and reflected by the compressor. This is later on necessary to predict radiated noise at the intake orifice. The fluid-dynamic behavior of the compressor has been reproduced by simplifying the real geometry in zero-dimensional and one-dimensional elements with acoustic purposes. These elements are responsible for attenuating or reflecting the pressure pulses generated by the engine. In order to compensate the effect of these elements in the mean flow variables, the model uses a corrected compressor map. Despite of the fact that the compressor model was developed originally as a part of the OpenWAM™ software, it can be exported to other commercial wave action models. An example is provided of exporting the described model to GT-Power™.
Technical Paper

Challenges and Opportunities for the Transition to Highly Energy-Efficient Passenger Cars

2011-06-09
2011-37-0013
Maintaining the current ratio between certified and the customer-observed fuel consumption even with future required levels poses a considerable challenge. Increasing the efficiency of the driveline enables certified fuel consumption down to a feasible level in the order of 80 g CO₂/km using fossil fuels. Mainly affecting off-cycle fuel consumption, energy amounts used to create good interior climate as well as energy-consuming options and features threaten to further increase. Progressing urbanization will lead to decreasing average vehicle speeds and driving distances. Highly efficient powertrains come with decreased amounts of waste energy traditionally used for interior climate conditioning, thus making necessary a change of auxiliary systems.
Technical Paper

Supporting an Automotive Safety Case through Systematic Model Based Development - the EAST-ADL2 Approach

2008-04-14
2008-01-0127
Automotive electronic systems are becoming safety related causing a need for more systematic and stringent approaches for demonstrating the functional safety. The safety case consists of an argumentation, supported by evidence, of why the system is safe to operate in a given context. It is dependent on referencing and aggregating information which is part of the EAST-ADL2, an architecture description language for automotive embedded systems. This paper explores the possibilities of integrating the safety case metamodel with the EAST-ADL2, enabling safety case development in close connection to the system model. This is done by including a safety case object in EAST-ADL2, and defining the external and internal relations.
Technical Paper

An Investigation of the Coupling Between the Passenger Compartment and the Trunk in a Sedan

2007-05-15
2007-01-2356
The low frequency acoustic response of the passenger compartment (cavity) in sedans is considered with respect to the coupling between the cavity and the trunk. Both acoustic (via holes in the parcel shelf or behind the backrest of the rear seat), and structural (via the parcel shelf itself, or the panel of the backrest) mechanisms are investigated by both test and CAE. It is found that the peaks in acoustic response of the cavity at low frequencies are due to both acoustic and structural phenomena. However, the acoustic ones can be effectively blocked by proper design of the trim. Recommendations concerning modeling of acoustic effects in sedans are formulated.
Technical Paper

A Reference Architecture for Infotainment Systems

2006-10-16
2006-21-0013
Volvo Car Corporation has developed a Reference Architecture for PAG1 Infotainment Systems. A Reference Architecture is an architecture scoping over more than a single system, i.e. an architecture aimed for a family of systems. The Infotainment Reference Architecture has since 2001 been successfully applied for the PAG family which so far covers the infotainment systems of Volvo XC90, Volvo S40/V50, Jaguar XK, Aston Martin DB9 and the brand new Volvo S80. In 1999, the system design departments started up with the clear objective to develop a system solution aiming for the PAG infotainment system family. The work was carried out according to the established development process at Volvo Cars. A year later a discouraging design review was performed. The number of involved functions, the level of function interaction and the distribution of functionalities between ECUs resulted in a non-manageable system solution.
Technical Paper

The Door Mounted Inflatable Curtain

2006-04-03
2006-01-1437
It has been shown that Inflatable Curtains have the potential to reduce head injuries in side impacts and the system has accordingly been introduced on a growing number of car models. There is also a potential benefit in rollover situations. This paper only consider performance in situations with belted occupants. To date, it has not been possible to implement an Inflatable Curtain in convertible vehicles because they lack a roof. The challenge of the Door Mounted Inflatable Curtain (DMIC) has been to overcome the lack of support and fixation possibilities offered by a roof. This paper includes a description of the DMIC and how it was integrated into the vehicle structure. The paper will also show how to create the space and support needed to utilize the internal stiffness and make it possible to fill the bag in time. The impact attenuation and ejection protection functions of the DMIC will be demonstrated.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

Balancing Thermodynamic and Aerodynamic Attributes Through the Use of a Common CFD Model

2005-05-10
2005-01-2052
This paper describes how simultaneous numerical simulation of cooling performance and aerodynamic drag can be used to achieve attribute-balanced solutions. Traditionally at Volvo, evaluation of cooling performance and aerodynamics are done by separate teams using separate models and software. However, using this approach, any project changes can be evaluated in terms of their effect on cooling performance and drag from one single model. This enables the project to make decisions that are optimal in a more global perspective. If several proposals have similar levels of cooling performance, the proposal that yields the lowest overall drag can be chosen, thus reducing the fuel consumption of the vehicle. The first part of the paper discusses the prerequisites for the method in terms of boundary conditions, mesh and solution strategy. For the cooling performance part, the importance of high quality boundary conditions is reviewed.
Technical Paper

Development and Validation of Coolant Temperature and Cooling Air Flow CFD Simulations at Volvo Cars

2004-03-08
2004-01-0051
This paper describes the development of a robust and accurate method to model one-phase heat exchangers in complete vehicle air flow simulations along with a comprehensive comparison of EFD and CFD results. The comparison shows that the inlet radiator coolant temperatures obtained with CFD were within ±4°C of the experimental data with a trend in the differences being dependent on the car speed. The relative differences in cooling air mass flow rates increase with increasing car speed, with CFD values generally higher than EFD. From the investigation, the conclusion is that the methodology and modeling technique presented offer an accurate tool for concept and system solutions on the front end design, cooling package and fan. Care must be taken in order to provide the best possible boundary conditions paying particular attention to the heat losses in the engine, performance data for the radiator and fan characteristics.
Technical Paper

Fast and economic stiffness evaluation of mechanical joints

2003-10-27
2003-01-2751
Car body structures and the joints between beam members have a great impact on global vehicle stiffness. With the method presented in this paper it is possible to experimentally assess the stiffness of joints by a robust and economic means. The stiffness of a beam can easily be found experimentally just by cutting it in two and using the cross-sections to calculate the polar moment of inertia. When it comes to a joint, there are no formulae or explicit expressions describing its behavior. Therefore, measurement of its mechanical behavior has to be made. The dynamic joint method presented here does not need levers or a costly, rigid set-up, but an economical free-free set-up and cast-on weights. Furthermore, the same method can be emulated by FEM when a digital model exists.
X