Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Conversion Performance Prediction of Thermal-Deteriorated Three-Way Catalysts: Surface Reaction Model Development Considering Platinum Group Metals and Co-Catalyst

2021-09-05
2021-24-0077
Three-way catalyst (TWC) converters can purify harmful substances, such as carbon monoxide, nitrogen oxides, and hydrocarbons, from the exhaust gases of gasoline engines. However, large amounts of these substances may be emitted before the TWC reaches its light-off temperature during cold starts, and its performance may be impaired by thermal deterioration during high-load driving. In this work, a simulation model was developed using axisuite commercial software by Exothermia S.A to predict the light-off conversion performance of Pd/CeO2-ZrO2-Al2O3 catalysts with different degrees of thermal deterioration. The model considered detailed surface reactions and the main factor of the deterioration mechanism. In the detailed reaction mechanism, adsorption, desorption, and surface reactions of each gas species at active sites of the platinum group metal (PGM) particles were considered based on the Langmuir-Hinshelwood mechanism.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
Technical Paper

Computational Optimization of Pressure Wave Reflection on the Piston Surface for Single Point Autoignition Gasoline Engine with Colliding Pulsed Supermulti-Jets Leading to Noiseless-High Compression and Nearly-Complete Air-Insulation

2019-04-02
2019-01-0235
A new engine concept based on pulsed supermulti-jets colliding at a small area around the chamber center was proposed in our previous research. It was expected to provide noiseless high compression ratio and nearly-complete air-insulation on chamber walls, leading to high thermal efficiency. In the previous reports, three-dimensional computations for the unsteady compressible Navier-Stokes equation were conducted, which were qualitative because of using regular grid method. This time, we develop a new numerical code in order to quantitatively simulate the compression level caused by the jets colliding with pulse. It is achieved by applying a staggered grid method to improve conservatibity of physical quantities at very high compression in combustion phenomena. Computations at a simple condition were fairly agreed with a theoretical value. Computational results obtained for a complex geometry of an engine by the new code had less error than one with previous codes.
Technical Paper

Experimental Measurements and Computations for Clarifying Nearly Complete Air-Insulation Obtained by the Concept of Colliding Pulsed Supermulti-Jets

2017-03-28
2017-01-1030
In our previous papers, a new concept of a compressive combustion engine (Fugine) was proposed based on the collision of pulsed supermulti-jets, which can enclose the burned gas around the chamber center leading to an air-insulation effect and also a lower exhaust gas temperature due to high single-point compression. In order to examine the compression level and air-insulation effect as basic data for application to automobiles, aircraft, and rockets, a prototype engine based on the concept, i.e., a piston-less prototype engine with collision of bi-octagonal pulsed multi-jets from fourteen nozzles, was developed. Some combustion results [Naitoh et al. SAE paper, 2016] were recently reported. However, there was only one measurement of wall temperature and pressure in the previous report. Thus, in this paper, more experimental data for pressures and temperatures on chamber walls and exhaust temperatures, are presented for the prototype engine.
Technical Paper

Unsteady Three-Dimensional Computations of the Penetration Length and Mixing Process of Various Single High-Speed Gas Jets for Engines

2017-03-28
2017-01-0817
For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
Technical Paper

A Quasi Two Dimensional Model of Transport Phenomena in Diesel Particulate Filters - The Effects of Particle Diameter on the Pressure Drop in DPF Regeneration Mode-

2016-10-17
2016-01-2282
Experimental and numerical studies on the combustion of the particulate matter in the diesel particulate filter with the particulate matter loaded under different particulate matter loading condition were carried out. It was observed that the pressure losses through diesel particulate filter loaded with particulate matter having different mean aggregate particle diameters during both particulate matter loading and combustion periods. Diesel particulate filter regeneration mode was controlled with introducing a hot gas created in Diesel Oxidation Catalyst that oxidized hydrocarbon injected by a fuel injector placed on an exhaust gas pipe. The combustion amount was calculated with using a total diesel particulate filter weight measured by the weight meter both before and after the particulate matter regeneration event.
Technical Paper

Computations and Experiments for Clarifying Compression Level and Stability of Colliding Pulsed Supermulti-Jets in a Piston-Less Single-Point Autoignition Engine

2016-10-17
2016-01-2331
In recent years, a new type of engine (Fugine) based on the colliding of pulsed supermulti-jets was proposed by us, which indicates the potential for attaining very high thermal efficiencies and also less combustion noise. A prototype engine with eight nozzles for injecting octagonal pulsed supermulti-jets, which was developed with a low-cost gasoline injector and a double piston system, showed high thermal efficiency comparable to that of diesel engines and also less combustion noise comparable to that of traditional spark-ignition gasoline engines. Another type of prototype piston-less engine having fourteen bioctagonal nozzles was also developed and test results confirmed the occurrence of combustion, albeit it was unstable. In this work, time histories of pressure were measured in the combustion chamber of the piston-less prototype engine under a cold flow condition without combustion in order to examine the compression level obtained with the colliding supermulti-jets.
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
Technical Paper

Optimization of Exhaust Pipe Injection Conditions for Diesel Oxidation

2007-10-29
2007-01-3998
In a Diesel Oxidation Catalyst (DOC) and Catalyzed Soot Filter (CSF) system, the DOC is used to oxidize additional fuel injected into the cylinder and/or exhaust pipe in order to increase the CSF's inlet temperature during soot regeneration. The catalyst's hydrocarbon (HC) oxidation performance is known to be strongly affected by the HC species present and the catalyst design. However, the engine operating conditions and additive fuel supply parameters also affect the oxidation performance of DOCs, but the effects of these variables have been insufficiently examined. Therefore, in this study, the oxidation performance of a DOC was examined in experiments in which both exhaust gas recirculation (EGR) levels and exhaust pipe injection parameters were varied. The results were then analyzed and optimal conditions were identified using modeFRONTIER.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 4th Report: The Measurement of Oil Pressure Under the Piston Oil Ring -

2006-10-16
2006-01-3440
Clarifying the mechanism of the oil consumption of engines is necessary for developing its estimation method. Oil moves upwards on the piston to the combustion chamber through ring sliding surfaces, ring backs and ring gaps. The mechanisms of oil upwards transport through the ring gaps are hardly analyzed. In this report, oil pressure just under the oil ring was successfully measured by newly developed method to clarify the oil transport mechanism at the ring gap. It was showed that the generated oil pressure pushed up the oil at the ring gap.
Technical Paper

Experimental and Numerical Studies on Particulate Matter Formed in Fuel Rich Mixture

2003-10-27
2003-01-3175
Experimental and numerical studies on PAHs (Polycyclic Aromatic Hydrocarbons) and PM (Particulate Matters) formed in the fuel rich mixture have been conducted. In the experiment, neat n-heptane and n-heptane with benzene 25 % by weight were chosen as test fuels. In-cylinder gases produced by the fuel-rich HCCI (Homogeneous Charge Compression Ignition) combustion were directly sampled and analyzed by the use of GC/MS (Gas Chromatograph/Mass Spectro- metry), and PM emission was also measured by PM sampling system to reveal characteristics of PM formation. Numerical study has been also carried out using a zero dimensional combustion model combined with detailed chemistry. Furthermore, simple surface growth of soot particles was integrated into a detailed chemical kinetic model, and validated with the experimental data.
Technical Paper

Experimental Study on Unregulated Emission Characteristics of Turbocharged DI Diesel Engine with Common Rail Fuel Injection System

2003-10-27
2003-01-3158
In this study, we selected four unregulated emissions species, formaldehyde, benzene, 1,3-butadiene and benzo[a]pyrene to research the emission characteristics of these unregulated components experimentally. The engine used was a water-cooled, 8-liter, 6-cylinder, 4-stroke-cycle, turbocharged DI diesel engine with a common rail fuel injection system manufactured for the use of medium-duty trucks, and the fuel used was JIS second-class light gas oil, which is commercially available as diesel fuel. The results of experiments indicate as follows: formaldehyde tends to be emitted under the low load condition, while 1,3-butadiene is emitted at the low engine speed. This is believed to be because 1,3-butadiene decomposes in a short time, and the exhaust gas stays much longer in a cylinder under the low speed condition than under the high engine speed one. Benzene is emitted under the low load condition, as it is easily oxidized in high temperature.
Technical Paper

Experimental and Numerical Studies on Soot Formation in Fuel Rich Mixture

2003-05-19
2003-01-1850
Experimental and numerical studies are conducted on the formation of soot and Polycyclic Aromatic Hydrocarbons (PAHs), regarded as precursors of soot, during the combustion of fuel-rich homogeneous n-heptane mixtures. In-cylinder gases are sampled directly through a high-speed solenoid valve in engine tests, to be analyzed by GC/MS for qualifying PAHs. Smoke concentration is also measured. A numerical study is carried out by using a zero-dimensional model combined with detailed chemical kinetics. The experiments and computations show that PAHs can be predicted qualitatively by means of the present kinetic model.
X