Refine Your Search

Topic

Search Results

Technical Paper

Innovative Piston Design Performance for High Efficiency Stoichiometric Heavy Duty Natural Gas Engine

2023-04-11
2023-01-0288
Internal combustion engines will continue to be the leading power-train in the heavy-duty, on-highway sector as technologies like hydrogen, fuel cells, and electrification face challenges. Natural gas (NG) engines offer several advantages over diesel engines including near zero particle matter (PM) emissions, lower NOx emissions, lower capital and operating costs, availability of vast domestic NG resources, and lower CO2 emissions being the cleanest burning of all hydrocarbons (HC). The main limitation of this type of engine is the lower efficiency compared to diesel counterparts. Addressing the limitations (knock and misfire) for achieving diesel-like efficiencies is key to accomplishing widespread adoption, especially for the US market. With the aim to achieve high brake thermal efficiency (BTE), three (3) computational fluid dynamics (CFD) optimized pistons with three different compression ratios (CR) have been tested.
Technical Paper

A Study of Propane Combustion in a Spark-Ignited Cooperative Fuel Research (CFR) Engine

2022-03-29
2022-01-0404
Liquefied petroleum gas (LPG), whose primary composition is propane, is a promising candidate for heavy-duty vehicle applications as a diesel fuel alternative due to its CO2 reduction potential and high knock resistance. To realize diesel-like efficiencies, spark-ignited LPG engines are proposed to operate near knock-limit over a wide range of operating conditions, which necessitates an investigation of fuel-engine interactions that leads to end-gas autoignition with propane combustion. This work presents both experimental and numerical studies of stoichiometric propane combustion in a spark-ignited (SI) cooperative fuel research (CFR) engine. Engine experiments are initially conducted at different compression ratio (CR) values, and the effects of CR on engine combustion are characterized.
Technical Paper

Bulk Spray and Individual Plume Characterization of LPG and Iso-Octane Sprays at Engine-Like Conditions

2022-03-29
2022-01-0497
This study presents experimental and numerical examination of directly injected (DI) propane and iso-octane, surrogates for liquified petroleum gas (LPG) and gasoline, respectively, at various engine like conditions with the overall objective to establish the baseline with regards to fuel delivery required for future high efficiency DI-LPG fueled heavy-duty engines. Sprays for both iso-octane and propane were characterized and the results from the optical diagnostic techniques including high-speed Schlieren and planar Mie scattering imaging were applied to differentiate the liquid-phase regions and the bulk spray phenomenon from single plume behaviors. The experimental results, coupled with high-fidelity internal nozzle-flow simulations were then used to define best practices in CFD Lagrangian spray models.
Technical Paper

Performance of Virtual Torque Sensor for Heavy Duty Truck Applications

2022-03-29
2022-01-0625
Automotive companies are constantly looking to increase the fuel efficiency, shift quality, passenger comfort, and to reduce wear and tear on the components. Most of these aspects depend on the accuracy of torque used for transmission control, which determines the required operational gear position at a given speed and road conditions. Currently, SAE J-1939 CAN bus torque estimation relies on steady state maps that are generated during the calibration of the engine for different speeds and loads. In this paper we report the development of a Virtual Flywheel Torque Sensor (VFTS) useful for real time torque measurement based on an engine speed harmonics analysis. The VFTS uses a signal from the flywheel speed sensor to estimate the flywheel angular acceleration, which and provides a proportional torque value which corresponds to torque at the flywheel.
Technical Paper

High-Fidelity Heavy-Duty Vehicle Modeling Using Sparse Telematics Data

2022-03-29
2022-01-0527
Heavy-duty commercial vehicles consume a significant amount of energy due to their large size and mass, directly leading to vehicle operators prioritizing energy efficiency to reduce operational costs and comply with environmental regulations. One tool that can be used for the evaluation of energy efficiency in heavy-duty vehicles is the evaluation of energy efficiency using vehicle modeling and simulation. Simulation provides a path for energy efficiency improvement by allowing rapid experimentation of different vehicle characteristics on fuel consumption without the need for costly physical prototyping. The research presented in this paper focuses on using real-world, sparsely sampled telematics data from a large fleet of heavy-duty vehicles to create high-fidelity models for simulation. Samples in the telematics dataset are collected sporadically, resulting in sparse data with an infrequent and irregular sampling rate.
Technical Paper

A Tool for Identifying Stationary State in Computational Fluid Dynamics Simulations of Unsteady Lube Oil Flows

2021-07-16
2021-01-5076
The paper presents a probability density function (PDF)-based tool that can be used to guide the identification of the stationary state of computational fluid dynamics (CFD) simulation results. Specifically, the probability density distributions of local lube oil volume fractions (VFs) are used. Applications of the tool to the time-dependent turbulent flow of lube oil in a gearbox are reported. The CFD simulations were performed using a traditional finite volume method and a particle-based method, respectively. The rotational speeds were 3000 rpm and 6535.7 rpm for the driving and the driven helical gears, and the lubricant’s temperature was 37.5°C. Besides lube oil flow behavior and VFs, also discussed are flow patterns, churning-loss predictions, and individual contributions from the two gears.
Technical Paper

High-Fidelity Modeling of Light-Duty Vehicle Emission and Fuel Economy Using Deep Neural Networks

2021-04-06
2021-01-0181
The transportation sector contributes significantly to emissions and air pollution globally. Emission models of modern vehicles are important tools to estimate the impact of technologies or controls on vehicle emission reductions, but developing a simple and high-fidelity model is challenging due to the variety of vehicle classes, driving conditions, driver behaviors, and other physical and operational constraints. Recent literature indicates that neural network-based models may be able to address these concerns due to their high computation speed and high-accuracy of predicted emissions. In this study, we seek to expand upon this initial research by utilizing several deep neural networks (DNN) architectures such as a recurrent neural network (RNN) and a convolutional neural network (CNN). These DNN algorithms are developed specific to the vehicle-out emissions prediction application, and a comprehensive assessment of their performances is done.
Technical Paper

Comparison of Optimal Energy Management Strategies Using Dynamic Programming, Model Predictive Control, and Constant Velocity Prediction

2020-10-05
2020-01-5071
Due to the recent advancements in autonomous vehicle technology, future vehicle velocity predictions are becoming more robust, which allows fuel economy (FE) improvements in hybrid electric vehicles (HEVs) through optimal energy management strategies (EMS). Velocity predictions generated between 5 and 30 s predictions could be implemented using model predictive control (MPC), but the performance of MPC must be well understood. Also, the vulnerability of predictive optimal EMS to velocity prediction accuracy should be addressed. Before an optimal EMS can be implemented, its overall performance must be evaluated and benchmarked against relevant velocity prediction metrics. A real-world highway drive cycle (DC) in the high-fidelity, controls-oriented 2017 Toyota Prius Prime model operating in charge-sustaining mode was utilized to observe FE realization.
Technical Paper

Experimental and Computational Studies of the No-Load Churning Loss of a Truck Axle

2020-04-14
2020-01-1415
This paper describes the work performed in predicting and measuring the contribution of oil churning to the no-load losses of a commercial truck axle at typical running speeds. A computational fluid dynamics (CFD) analysis of the churning losses was conducted. The CFD model accounts for design geometry, operating speed, temperature, and lubricant properties. The model calculates the oil volume fraction and the torque loss caused by oil churning due to the viscous and inertia effects of the fluid. CFD predictions of power losses were then compared with no-load measurements made on a specially developed, dynamometer-driven test stand. The same axle used in the CFD model was tested in three different configurations: with axle shafts, with axle shafts removed, and with ring gear and carrier removed. This approach to testing was followed to determine the contribution of each source of loss (bearings, seals, and churning) to the total loss.
Technical Paper

Synchronous and Open, Real World, Vehicle, ADAS, and Infrastructure Data Streams for Automotive Machine Learning Algorithms Research

2020-04-14
2020-01-0736
Prediction based optimal energy management systems are a topic of high interest in the automotive industry as an effective, low-cost option for improving vehicle fuel efficiency. With the continuing development of connected and autonomous vehicle (CAV) technology there are many data streams which may be leveraged by transportation stakeholders. The Suite of CAVs-derived data streams includes advanced driver-assistance (ADAS) derived information about surrounding vehicles, vehicle-to-vehicle (V2V) communications for real time and historical data, and vehicle-to-infrastructure (V2I) communications. The suite of CAVs-derived data streams have been demonstrated to enable improvements in system-level safety, emissions and fuel economy.
Technical Paper

Vehicle Velocity Prediction Using Artificial Neural Network and Effect of Real World Signals on Prediction Window

2020-04-14
2020-01-0729
Prediction of vehicle velocity is important since it can realize improvements in the fuel economy/energy efficiency, drivability, and safety. Velocity prediction has been addressed in many publications. Several references considered deterministic and stochastic approaches such as Markov chain, autoregressive models, and artificial neural networks. There are numerous new sensor and signal technologies like vehicle-to-vehicle and vehicle-to-infrastructure communication that can be used to obtain inclusive datasets. Using these inclusive datasets of sensors in deep neural networks, high accuracy velocity predictions can be achieved. This research builds upon previous findings that Long Short-Term Memory (LSTM) deep neural networks provide low error velocity prediction. We developed an LSTM deep neural network that uses different groups of datasets collected in Fort Collins, Colorado.
Technical Paper

CVT Ratio Scheduling Optimization with Consideration of Engine and Transmission Efficiency

2019-04-02
2019-01-0773
This paper proposes a transmission ratio scheduling and control methodology for a vehicle with a Continuous Variable Transmission (CVT) and a downsized gasoline engine. The methodology is designed to deliver the optimal vehicle fuel economy within drivability and performance constraints. Traditionally, the Optimum Operating Line (OOL) generated from an engine brake specific fuel consumption map is considered to be the best option for ratio scheduling, as it defines the points at which engine efficiency is maximized. But the OOL does not consider transmission efficiency, which may be a source of significant losses. To develop a CVT ratio schedule that offers the best fuel economy for the complete powertrain, an empirical approach was used to minimize fuel consumption by considering engine efficiency, CVT efficiency, and requested vehicle power. A backward-looking model was used to simulate a standard driving cycle (FTP-75) and develop a new powertrain-optimal operating line (P-OOL).
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Development and Validation of a CFD Simulation to Model Transient Flow Behavior in Automotive Refueling Systems

2019-04-02
2019-01-0819
Government regulations restrict the evaporative emissions during refueling to 0.20 grams per gallon of dispensed fuel. This requires virtually all of the vapors generated and displaced while refueling to be stored onboard the vehicle. The refueling phenomenon of spitback and early-clickoff are also important considerations in designing refueling systems. Spitback is fuel bursting past the nozzle and into the environment and early-clickoff is the pump shutoff mechanism being triggered before the tank is full. Development of a new refueling system design is required for each vehicle as packaging requirements change. Each new design (or redesign) must be prototyped and tested to ensure government regulations and customer satisfaction criteria are satisfied. Often designs need multiple iterations, costing money and time in prototype-based validation procedures. To conserve resources, it is desired to create a Computational Fluid Dynamics (CFD) tool to assist in design validation.
Technical Paper

Colorado State University EcoCAR 3 Final Technical Report

2019-04-02
2019-01-0360
Driven by consumer demand and environmental regulations, market share for plug-in hybrid electric vehicles (PHEVs) continues to increase. An opportunity remains to develop PHEVs that also meet consumer demand for performance. As a participant in the EcoCAR 3 competition, Colorado State University’s Vehicle Innovation Team (CSU VIT) has converted a 2016 Chevy Camaro to a PHEV architecture with the aim of improving efficiency and emissions while maintaining drivability and performance. To verify the vehicle and its capabilities, the CSU Camaro is rigorously tested by means of repeatable circumstances of physical operation while Controller Area Network (CAN) loggers record various measurements from several sensors. This data is analyzed to determine consistent output and coordination between components of the electrical charge and discharge system, as well as the traditional powertrain.
Technical Paper

Vehicle Electrification in Chile: A Life Cycle Assessment and Techno-Economic Analysis Using Data Generated by Autonomie Vehicle Modeling Software

2018-04-03
2018-01-0660
The environmental implications of converting vehicles powered by Internal Combustion Engines (ICE) to battery powered and hybrid battery/ICE powered are evaluated for the case of Chile, one of the worldwide leaders in the production of lithium (Li) required for manufacturing of Li-ion batteries. The economic and environmental metrics were evaluated by techno-economic analysis (TEA) and Life Cycle Assessment (LCA) tools - SuperPro Designer and Gabi®/GREET® models. The system boundary includes both the renewable and nonrenewable energy sources available in Chile and well-to-pump energy consumptions and GHG emissions due to Li mining and Li-ion battery manufacturing. All the major input data required for TEA and LCA were generated using Autonomie vehicle modeling software. This study compares economic and environmental indicators of three vehicle models for the case of Chile including compact, mid-size, and a light duty truck.
Technical Paper

Considerations for CFD Simulations of a Refueling Pump Nozzle with Application to the Computer Aided Engineering of a Vehicle Refueling System

2018-04-03
2018-01-0489
A vehicle’s refueling system including components, which make up the onboard refueling vapor recovery (ORVR) system, must be designed to meet federally set evaporative hydrocarbon emission regulations and other performance issues inherent to the refueling process, such as premature click-off and spit-back. A Computational Fluid Dynamics (CFD) model able to predict the performance of a vehicle’s refueling system could be a valuable tool towards the development of future designs, saving the Original Equipment Manufacturer’s (OEM) time and money in the research and development phases. To create an adequate model required for Computer Aided Engineering (CAE) of a modern refueling system, it is paramount to accurately predict the fluid dynamics through and out of a gasoline refueling nozzle, as this is a key inlet condition of any refueling system. This study aims to validate CFD simulations, which predict the fluid dynamics through a refueling gasoline pump nozzle.
Technical Paper

V2V Communication Based Real-World Velocity Predictions for Improved HEV Fuel Economy

2018-04-03
2018-01-1000
Studies have shown that obtaining and utilizing information about the future state of vehicles can improve vehicle fuel economy (FE). However, there has been a lack of research into whether near-term technologies can be utilized to improve FE and the impact of real-world prediction error on potential FE improvements. In this study, a speed prediction method utilizing simulated vehicle-to-vehicle (V2V) communication with real-world driving data and a drive cycle database was developed to understand if incorporating near-term technologies could be utilized in a predictive energy management strategy to improve vehicle FE. This speed prediction method informs a predictive powertrain controller to determine the optimal engine operation for various prediction durations. The optimal engine operation is input into a validated high-fidelity fuel economy model of a Toyota Prius.
Technical Paper

Application of Pre-Computed Acceleration Event Control to Improve Fuel Economy in Hybrid Electric Vehicles

2018-04-03
2018-01-0997
Application of predictive optimal energy management strategies to improve fuel economy in hybrid electric vehicles is an active subject of research. Acceleration events during a drive cycle provide particularly attractive opportunities for predictive optimal energy management because of their high energy cost and limited variability, which enables optimal control trajectories to be computed in advance. In this research, dynamic-programming derived optimal control matrices are implemented during a drive cycle on a validated model of a 2010 Toyota Prius to simulate application of pre-computed control to improve fuel economy over a baseline model. This article begins by describing the development of the vehicle model and the formulation of optimal control, both of which are simulated over the New York City drive cycle to establish baseline and upper-limit fuel economies. Then, optimal control strategies are computed for acceleration events in the drive cycle.
Technical Paper

Towards Improving Vehicle Fuel Economy with ADAS

2018-04-03
2018-01-0593
Modern vehicles have incorporated numerous safety-focused Advanced Driver Assistance Systems (ADAS) in the last decade including smart cruise control and object avoidance. In this paper, we aim to go beyond using ADAS for safety and propose to use ADAS technology to enable predictive optimal energy management and improve vehicle fuel economy. We combine ADAS sensor data with a previously developed prediction model, dynamic programming optimal energy management control, and a validated model of a 2010 Toyota Prius to explore fuel economy. First, a unique ADAS detection scope is defined based on optimal vehicle control prediction aspects demonstrated to be relevant from the literature. Next, during real-world city and highway drive cycles in Denver, Colorado, a camera is used to record video footage of the vehicle environment and define ADAS detection ground truth. Then, various ADAS algorithms are combined, modified, and compared to the ground truth results.
X