Refine Your Search

Topic

Search Results

Technical Paper

Combustion and HC&PN Emission Characteristics at First Cycle Starting of Gasoline Engine under Lean Burn Based on Active Pre-Chamber

2024-04-09
2024-01-2108
As a novel ignition technology, pre-chamber ignition can enhance ignition energy, promote flame propagation, and augment turbulence. However, this technology undoubtedly faces challenges, particularly in the context of emission regulations. Of this study, the transient characteristics of combustion and emissions in a hybrid electric vehicle (HEV) gasoline engine with active pre-chamber ignition (PCI) under the first combustion cycle of quick start are focused. The results demonstrate that the PCI engine is available on the first cycle for lean combustion, such as lambda 1.6 to 2.0, and exhibit particle number (PN) below 7×107 N/mL at the first cycle. These particles are predominantly composed of nucleation mode (NM, <50 nm) particles, with minimal accumulation mode (AM, >50 nm) particles.
Technical Paper

Combustion of Premixed Ammonia and Air Initiated by Spark- ignited Micro-gasoline-jet in a Constant Volume Combustible Vessel

2023-09-29
2023-32-0066
As an efficient hydrogen carrier, ammonia itself is also a promising zero-carbon fuel that is drawing more and more attention. As the combustion of pure ammonia is hard to achieve on SI engines, in this study, spark- ignited micro-gasoline-jet was utilized to ignite the premixed ammonia/air mixture in a constant volume combustible vessel at different premixed ammonia/air excess air coefficient and backpressure (represented by ammonia partial pressure). The flame image was captured by a high-speed camera and the transient pressure change in the vessel was measured by an engine cylinder pressure sensor.
Technical Paper

A Comparative Study on the Ignition Mechanism of Multi-site Ignition and Continuous Discharge Strategy

2021-09-21
2021-01-1162
Advanced combustion engines dominate all automotive applications. Future high efficiency clean combustion engines can contribute significantly to sustainable transportation. Effective ignition strategies are studied to enable lean and diluted combustion under considerably high-density mixture and strong turbulences, for improving the efficiency and emissions of future combustion engines. Continuous discharge and multi-site ignition strategies have been proved to be effective to stabilize the combustion process under lean and EGR diluted conditions. Continuous discharge strategy uses a traditional sparkplug with a single spark gap and multiple ignition coil packs. The ignition coil packs operate under a specific time offset to realize a continuous discharge process with a prolonged discharge duration. Multi-site ignition strategy also uses multiple ignition coil packs.
Technical Paper

The Effect of Tuning PMSM Torque to Track Engine Torque on Speed Fluctuation of Range Extender

2021-04-06
2021-01-0784
REEV (Range-Extended Electric Vehicle) can avoid the mileage anxiety of BEV (Battery Electric Vehicle). Nevertheless, RE (Range Extender) for passenger cars prefers to use ICE (Internal Combustion Engine) with smaller displacement and lower cylinder number, which is usually with a worse vibration performance at low speeds. As RE only outputs electricity, it provides the possibility to optimize NVH (Noise, Vibration, and Harshness) of the engine by PMSM (Permanent Magnet Synchronous Motor). By real-time control, the electromagnetic torque of PMSM can track the shaft torque fluctuation during engine strokes, especially the combustion stroke. When the instability and rolling torque of RE could be suppressed, NVH performance of RE can be improved. This paper presents simulation research on speed fluctuation suppression for RE engine based on dynamic torque compensation by controlling a PMSM.
Technical Paper

Optimization of Speed Fluctuation of Internal Combustion Engine Range Extender by a Dual Closed-Loop Control Strategy

2021-04-06
2021-01-0782
With the increasing concern on environmental pollution and CO2 emission all over the world, range-extended electrical vehicle (REEV) has gradually got more attention because it could avoid the mileage anxiety of the battery electrical vehicles (BEV) and get high energy efficiency. Nevertheless, NVH performance of internal combustion engine range extender (ICRE) is a critical problem that affects the driving experiences for REEV. In this paper, a two-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially mounted to run as an ICRE. The ICRE control system was established based on Compact RIO hardware and LabVIEW, who has the functions of the intake throttle PID closed-loop control, autonomous ICRE operation control, and speed PID closed-loop control. In this paper, the gasoline engine was first driven to the idle condition by PMSM in speed-control mode.
Technical Paper

Carbon Emission Research of Taxi Fleet from ICEV to BEV (Shanghai Case)

2021-01-22
2021-01-5009
Based on the life cycle assessment method, this paper takes Shanghai taxi fleet as the research objective (traditional fuel vehicle (ICEV) and battery electric vehicle (BEV)). Under the condition of Shanghai energy structure, and combined with the actual application scenario of Shanghai taxi fleet, the study and prediction of carbon emission is carried out from three stages of manufacture, use and recycle. The research results show that: in the life cycle, under the current energy structure and battery technology of the taxi fleet in Shanghai, the carbon emission of BEV and ICEV will be at the same level at the mileage of 50,000 km. With the adjustment of energy structure, the progress of battery technology and the increase of the proportion of battery electric taxi fleet, the overall carbon emission of Shanghai taxi fleet will be reduced significantly.
Technical Paper

Research on Life Cycle of Typical Passenger Vehicles Based on Energy Structure

2020-12-14
2020-01-5187
Based on the principle of carbon footprint, this paper selects typical passenger cars, such as internal combustion engine vehicles (ICEV), plug-in hybrid electric vehicles (PHEV) and battery electric vehicles (BEV) in the market of China as the research objects, and compares the energy consumption and carbon emissions of the three vehicle models in the whole life cycle for three major stages of manufacturing, driving and recycling in three representative cities. The results show that the manufacturing energy consumption of BEV is 5 times of HEV and 10 times of ICEV. For the BEV, only after driving a certain mileage it can be a less the unit energy consumption and emissions than ICEV. The whole life cycle carbon emissions of passenger cars with different power types is not only related to mileage, but also related to the energy structure of local electric power supply.
Technical Paper

Characteristics of Transient NOx Emissions of HEV under Real Road Driving

2020-04-14
2020-01-0380
To meet the request of China National 6b emission regulations which will be officially implemented in China, firstly including the RDE emission test limits, the transient emissions on real road condition are paid more attention. A non-plug-in hybrid light-duty gasoline vehicles (HEV) sold in the Chinese market was selected to study real road emissions employed fast response NOx analyzer from Cambustion Ltd. with a sampling frequency of 100Hz, which can measure the missing NO peaks by standard RDE gas analyzer now. Emissions from PEMS were also recorded and compared with the results from fast response NOx analyzer. The concentration of NOx emissions before and after the Three Way Catalyst (TWC) of the hybrid vehicle were also sampled and analyzed, and the working efficiency of the TWC in real road driving process was investigated.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
Technical Paper

Effect of EGR Temperature on PFI Gasoline Engine Combustion and Emissions

2017-10-08
2017-01-2235
In order to investigate the impacts of recirculated exhaust gas temperature on gasoline engine combustion and emissions, an experimental study has been conducted on a turbocharged PFI gasoline engine. The engine was equipped with a high pressure cooled EGR system, in which different EGR temperatures were realized by using different EGR coolants. The engine ran at 2000 r/min and 3000 r/min, and the BMEP varied from 0.2MPa to 1.0MPa with the step of 0.2MPa. At each case, there were three conditions: 0% EGR, 10% LT-EGR, 10% HT-EGR. The results indicated that LT-EGR had a longer combustion duration compared with HT-EGR. When BMEP was 1.0 MPa, CA50 of HT-EGR advanced about 5oCA. However, CA50 of LT-EGR could still keep steady and in appropriate range, which guaranteed good combustion efficiency. Besides, LT-EGR had lower exhaust gas temperature, which could help to suppress knock. And its lower exhaust gas temperature could reduce heat loss. These contributed to fuel consumption reduction.
Technical Paper

Improvement on Energy Efficiency of the Spark Ignition System

2017-03-28
2017-01-0678
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems have progressed rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances.
Technical Paper

Study on Fuel Economy Improvement by Low Pressure Water-Cooled EGR System on a Downsized Boosted Gasoline Engine

2016-04-05
2016-01-0678
This research was concerned with the use of Exhaust Gas Recirculation (EGR) improving the fuel economy over a wide operating range in a downsized boosted gasoline engine. The experiments were performed in a 1.3-Litre turbocharged PFI gasoline engine, equipped with a Low Pressure (LP) water-cooled EGR system. The operating conditions varied from 1500rpm to 4000rpm and BMEP from 2bar to 17bar. Meanwhile, the engine’s typical operating points in NEDC cycle were tested separately. The compression ratio was also changed from 9.5 to 10.5 to pursue a higher thermal efficiency. A pre-compressor throttle was used in the experiment working together with the EGR loop to keep enough EGR rate over a large area of the engine speed and load map. The results indicated that, combined with a higher compression ratio, the LP-EGR could help to reduce the BSFC by 9∼12% at high-load region and 3∼5% at low-load region.
Technical Paper

Numerical Simulation and Optimization of the Underhood Fluid Field and Cooling Performance for Heavy Duty Commercial Vehicle under Different Driving Conditions

2015-09-29
2015-01-2902
As the commercial vehicle increases staggeringly in China, environmental pollution and excessively fuel consumption can't be neglected anymore. Vehicle thermal management has been adopted by many vehicle manufactures as an ideal alternative to reduce fuel consumption and exhaust emission by its cost-efficient and effective merit. In addition, the components in heavy duty commercial vehicle engine hood may suffer overheat harm. Hence investigating the thermal characteristics in engine hood can be an effective way to identify and dismiss the potential overheat harm. In terms of this, the paper has adopted CFD simulation method to obtain the comprehensive thermal flow field characteristics of engine hood in a heavy commercial vehicle. Then by analyzing the thermal flow field in engine hood, concerning optimization strategies were put forward to improve the thermal environment.
Technical Paper

A Study on Combustion and Emission Characteristics of GDI Engine for HEV at Quick Start

2014-10-13
2014-01-2709
Gasoline Direct Injection (GDI) engines have attracted interest as automotive power-plants because of their potential advantages in down-sizing, fuel efficiency and in emissions reduction. However, GDI engines suffer from elevated unburned hydrocarbon (HC) emissions during start up process, which are sometimes worsened by misfires and partial burns. Moreover, as the engine is cranked to idle speed quickly in HEVs (Hybrid Electric Vehicle), the transients of quick starts are more dramatically than that in traditional vehicle, which challenge the optimization of combustion and emissions. In this study, test bench had been set up to investigate the GDI engine performances for ISG (Integrated Starter and Generator) HEVs during start up process. Based on the test system, cycle-controlled of the fuel injection mass, fuel injection timing and ignition timing can be obtained, as well as the cycle-resolved measurement of the HC concentrations and NO emissions.
Technical Paper

Effect of Two-Stage Valve Lift for Fuel Economy and Performance on a PFI Gasoline Engine

2014-10-13
2014-01-2874
Reducing the pumping loss, and thus, the fuel consumption of gasoline engine at part load, a two-stage intake valve lift system was implanted into a PFI engine. A corresponding engine model was set up with GT-power as well, which can simulate the effect of two-stage intake valve lift and different EGR rates on fuel economy performance and on combustion condition of a gasoline engine. Based on simulation results, the valve lift control strategy and EGR control strategy was studied in this paper. Results showed that at low engine speed, when SMALL LIFT was used, the tumble flow and the combustion process in cylinder was improved and burn time duration became shorter, resulting in higher indicated efficiency and lower fuel consumption than by LARGE LIFT. With the introduction of the exhaust gas recirculation (EGR), lower fuel consumption was acquired.
Technical Paper

Investigations on Mixture Formation during Start-UP Process of a Two-Stage Direct Injection Gasoline Engine for HEV Application

2013-10-14
2013-01-2657
A cycle-resolved test system was designed in a Two Stage Direct Injection (TSDI) Gasoline engine to simulate the engine quick start process in an Integrated Start and Generator (ISG) Hybrid Electric Vehicle (HEV) system. Based on the test system, measurement of the in cylinder HC concentrations near the spark plug under different engine coolant temperature and cranking speed conditions were conducted using a Fast Response Flame Ionization Detector (FFID) with Sampling Spark Plug (SSP) fits, then the in-cylinder equivalence ratio near the spark plug was estimated from the measured HC concentrations. In addition, the effects of the 1st injection timing, 2nd injection timing, and total equivalence ratio on the mixture formation near the spark plug were analyzed by means of experiments.
Technical Paper

Effect of First Cycle Fuel Injection Timing on Performance of a PFI Engine during Quick Start for HEV Application

2011-04-12
2011-01-0886
Idle stopping is one of the most important fuel saving methods for hybrid electric vehicle (HEV). While the enriched injection strategy which was employed to ensure reliable ignition of first cycle will leads to even more fuel film stayed in the intake port, all of the liquid film will evaporate randomly and interfere the mixture air-fuel ratio of the followed cycles. The fuel transport of the first cycle should be enhanced to reduce the residual fuel film, and then the control of the cycle-by-cycle air-fuel ratio will become easier and the combustion and HC emissions will also be better. In this paper the mixture preparation characteristics of the unfired first cycle, as well as the combustion and HC emissions characteristics of the fired first cycle under various injection timing strategies such as close-valve injection, mid-valve injection, and open-valve injection were investigated.
Technical Paper

Optimization of Control Strategy for Engine Start-stop in a Plug-in Series Hybrid Electric Vehicle

2010-10-25
2010-01-2214
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
Technical Paper

Power Matching and Control Strategy of Plug-in Series Hybrid Electric Car

2010-10-25
2010-01-2195
In this paper, based on the plug-in series hybrid electric vehicle development project, the vehicle technology solutions and the match of power system parameters were analyzed. The vehicle control strategies were identified and optimized according to plug-in hybrid vehicle features. The plug-in series hybrid, rule-based logic threshold switching control strategy, charge depleting (CD) mode and charge-sustaining (CS) mode are chosen according to the key factors, such as the environment, performance requirements, technical requirements and cost. And then the structure and model of vehicle control strategy were established to carry out vehicle energy management and power system control. The parameter selection, electric drive system matching, energy storage system design based on the requirement of vehicle performance, system architecture and control strategy are presented.
Technical Paper

Fuel Injection Optimization during Engine Quick Start by Means of Cycle-by-Cycle Control Strategy for HEV Application

2009-11-02
2009-01-2718
Engine-off strategy are popular used in hybrid electric vehicles (HEV) for fuel saving. The engine of an HEV will start and stop frequently according to the road condition. In order to obtain excellent fuel economy and emissions performance, the fuel injection during engine quick start should be optimized. In this paper, the characteristic of mixture formation and the HC emissions at the first 5 cycles which contribute the most HCs were investigated. After the analysis of mixture preparation during start process, the HC emissions during engine quick start were optimized by means of cycle-by-cycle fuel injection control strategy. The fuel mixture concentration during start-up process fluctuates more dramatically under hot start condition. Typically, the mixture at 4th and 5th cycle is over-riched. Based on the original engine calibration, the fuel injection at the initial 5 cycles was optimized respectively.
X