Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A New Method of Stress Calculation in Spot Welded Joint and Its Application to Fatigue Life Prediction of Actual Vehicle

2003-10-27
2003-01-2809
A method of fatigue life prediction of spot welded joint under multi-axial loads has been developed by fatigue life estimation working groups in the committee on fatigue strength and structural reliability of JSAE. This method is based on the concept of nominal structural stress ( σ ns) proposed by Radaj and Rupp, and improved so that D value is not involved in stress calculation. The result of fatigue life estimation of actual vehicle with nominal structural stress which was calculated through newly developed method had very good correlation with the result of multi-axial loads fatigue test carried out with test piece including high strength steel.
Technical Paper

A Study on the Cyclic Plastic Zone Size Method, ω*, for Digital Fatigue Life Prediction of Arc-Welded Joints

2003-10-27
2003-01-2835
Various prediction methods have been proposed for evaluating the fatigue life of welded joints by combining finite element analysis (FEA) with an experimental database. However, to obtain more universal and accurate fatigue life predictions, it is necessary to have criteria for making integrated evaluations of the fatigue strength of welded joints. This paper presents a study that focuses on the local cyclic plastic zone size (ω*) as the criterion of fatigue strength and investigates its validity. The definition of ω* was given by the relationship between the stress state at the notch tip and the elastic strain which was defined along the strain-life fatigue curve (ε - N diagram) of a base metal. As a result of using ω*, it was found that an integrated fatigue life prediction was possible to a certain extent for notch and arc-welded joint specimens.
Technical Paper

Development of an Inexpensive, Highly Wear-Resistant Ceramic Cam Follower - Part 1 Engine Test Results

1993-11-01
931933
This paper describes the development of an inexpensive ceramic cam follower that uses a silicon nitride material and is more wear and scuff resistant than the sinter alloy cam follower. A thin ceramic disk is directly brazed on a steel cam follower body without using any stress-relief materials which makes the grinding for crowning unnecessary, reducing the production cost. We performed a material screening test using an abrasion tester to determine the optimum type of silicon nitride and the optimum surface roughness. Engine endurance tests proved its excellent wear and scuff resistance. Consequently, it has been adopted in the 1993 series production engines as the first ceramic cam follower.
Technical Paper

Study of SiC Application to Diesel Particulate Filter (Part 1): Material Development

1993-03-01
930360
We studied the use of SiC porous material for diesel particulate filters. Crystallities of SiC grow into hexagonal plates during sintering,but their sizes have not been controllable yet. We developed a production process that makes the average pore diameter as desired in limiting the pore size distribution to a narrow range. Diesel particulate filters made of SiC greatly reduce pressure loss even when a large quantity of particulates accumulates as compared with conventional wall-flow type filter of cordierite of the same size. This enables particulate filter to be made smaller. The good thermal conductivity of SiC allows fast regeneration without a temperature spike, but its large coefficient of thermal expansion causes heat cracks during rig tests and engine bench tests. The rig tests showed that the heat cracking problem can be solved if the length and diameter are below a certain threshold for each.
Technical Paper

Study of SiC Application to Diesel Particulate Filter (Part 2): Engine Test Results

1993-03-01
930361
The characteristics of a new diesel particulate filter material made of SiC were studied through engine tests in varying material properties, such as average pore diameter, and wall thickness. Compared to a conventional cordierite filter of the same size, particulate trapping efficiency is almost the same, and the pressure loss and the deterioration of fuel consumption can be reduced to about half with the optimum material properties. If the same pressure loss is allowed, the filter size can be reduced by 30%. Its good thermal conductivity prevents local temperature increases, which doubles the permissible amount of trapped particulates. As heat crack problems occurred in integral-type filters due to the high thermal expansion of SiC, a split-type filter having 49 filter segments with a square section was developed.
X