Refine Your Search

Topic

Author

Search Results

Technical Paper

Cost Effective Techniques for SCEV to Improve Performance & Life of Battery and Motor by Using Efficient Thermal Systems

2024-01-16
2024-26-0275
The automotive world is moving towards electric powertrain systems. The electric powertrain systems have emerged as a promising alternative to the conventional powertrain system. The performance of electric vehicle is highly dependent on operating temperature of electric and electronic components of the vehicle. All power electronics and electric components in EV generate heat during operation and it must be removed to prevent overheating of components. Higher temperatures raise safety concerns whereas lower temperatures deteriorate the performance of power electronics & electric components. These power electronics & electrical components perform efficiently and safely if operated within certain temperature range. This paper presents an advanced efficient cost-effective thermal technique for small commercial electric vehicle (SCEV) to improve the performance & life of major electric components.
Technical Paper

ISO 26262 Functional Safety – An Approach for Compliance Readiness

2024-01-16
2024-26-0104
Electrical and Electronic systems in a vehicle are increasing manifolds with Electric and ADAS Vehicles taking the lead. There is a rapid transition happening from hardware driven vehicles to software driven vehicles. ISO 26262 is a global standard defined for functional safety (FuSa) in the automotive industry which addresses the structured design and development approach for eliminating electrical malfunctions leading to critical hazards such as fire in EVs. The standard defines specific requirements that need to be met by the safety relevant electrical system and also by development processes. Though the implementation of FuSa is crucial from vehicle safety point of view, its compliance is still a challenge majorly due to lack of awareness, in-built complexities, increase in project development time and subsequent cost. In this work, we focus on a FuSa implementation model taking into account the conventional new program development cycle.
Technical Paper

ORVM Based Cabin Thermal Comfort - A Technological Approach

2023-09-14
2023-28-0042
Enriched ventilation and driver assistance systems which plays vital role in human thermal comfort and safety, are now necessities for the whole automotive sector. For faster cabin thermal comfort, air circulation around occupant’s body reveals higher cabin comfort index. In India natural and forced ventilation system is predominantly used in commercial vehicles as an economical solution for achieving interim cabin comfort over air conditioning system. Presently used forced ventilation system consist of electrically driven blower motor to remove stale air around human body which is adding alternator load and thus affects fuel economy. Remarkably, 22% of such auxiliary electrical load is taken by electrical components from engine generated power. In order to enhance cabin thermal comfort and conceivably reduce power usage, an effective air flow control system is need of hour.
Technical Paper

Implementation of IR Cut and Solar Green Glass to Optimize the Heat Load for Air Conditioning in Electric Buses

2023-09-14
2023-28-0006
Commercial electric vehicle air conditioning system keeps occupants comfortable, but at the expense of the energy used from the battery of vehicle. Passengers around the world are increasingly requesting buses with HVAC/AC capabilities. There is a need to optimise current air conditioning systems taking into account packaging, cost, and performance limits due to the rising demand for cooling and heating globally. Major elements contributing to heat ingress are traction motor, front firewall, windshield & side glasses and bus body parts. These elements contribute to the bus’s poor cooling and lack of passenger comfort. This topic refers to the reduction of the heat ingress through usage of different glass technology like IR Cut & solar green glass with different types of coating.
Technical Paper

Electro-Thermal Simulation Methodology for Battery Thermal Management System (BTMS) Performance Evaluation of Li-Ion Battery Electric Vehicles

2023-09-14
2023-28-0005
In the recent years, Hybrid and Electric Vehicles (EVs) have gained attention globally due to conventional non-renewable fuels becoming expensive and increasing pollution levels in the environment. Li-ion battery EV’s are most popular because of their better power density, spe. energy density and thermal stability. With the advent of battery EV’s, concerns regarding thermal safety of vehicle and its occupants has grown among the prospective customers. Temperature plays an important role in the performance of the Li-ion battery which includes cell capacity, charge output, vehicle range, mechanical life of the battery etc. For Li-ion cells, optimum operating range should be between 15-35 °C [1], and all cells must also be maintained within a ±5 °C variation band. Computational Fluid Dynamics (CFD) simulation can be used to get better insight of cell temperature inside battery. But CFD simulation process is complex, time consuming involving multi-physics and exhaustive computations.
Technical Paper

Development of Compact Battery Cooling System with Smart Diagnosis & Troubleshooting Tool for Small Commercial Vehicle

2023-09-14
2023-28-0028
Battery cooling system plays a vital role in all kind of Electric vehicles. For Indian applications where vehicles will be subjected to slower speeds due to heavy traffic, higher ambient conditions and excess loading pattern in commercial vehicles, designing a Battery cooling system (BCS) is a challenging task. There are various options for cooling of battery i.e. Natural air cooled, forced air cooled, indirect cooling. This paper discusses about indirect coolant based cooling of battery of a small commercial vehicle. Battery cooling system works on the principle of Indirect cooling with the combination of vapor compression cycle and water-coolant mixture path. R134a gas used for VCRS system and for cooling system used 50-50% water glycol coolant mixture. For this type of battery cooling system typically There are challenges of packaging of various battery cooling parts, hose routing, pipe bends which may result in de aeration issues.
Technical Paper

Achievement of Superior Cabin Comfort and Maximising Energy Efficiency Using EXV in BEVs

2023-09-14
2023-28-0022
The global and Indian automotive industry is transitioning from use of Internal Combustion Engine (ICE) vehicles towards Battery Electric Vehicles (BEVs). BEV applications with high voltage (HV) battery require optimal thermal management to have a longer life, higher efficiency and to deliver superior year-round performance. In most electric vehicles, the Heating Ventilation and Air Conditioning (HVAC) system operates thru a dual loop; one loop for maintaining desired cabin comfort and a second loop to ensure optimum cell temperature for HV battery operation at varying climatic conditions, which the vehicle experiences over different seasons of the year This paper evaluates the limitations of a baseline system, in which the HVAC system consists of two parallel low-pressure cooling lines, one for maintaining cabin comfort and another for the purpose of battery cooling.
Technical Paper

A New Gen ‘Super-Efficient Condenser’ for Mobile Air Conditioning Application

2023-09-14
2023-28-0043
In the modern era of automotive industry, occupant comfort inside the cabin is a basic need and no more a luxury feature. With increase in number of vehicles, the expectations from customers are also changing. One of the major expectations from real world customers is quick cabin cooling thru all seasons, particularly when the vehicle is hot soaked and being used in summer conditions. Occupant thermal comfort inside the vehicle cabin is provisioned by a mobile air conditioning (MAC) system, which operates on a vapor compression-based cycle using a refrigerant. The main components of a direct expansion (DX) based MAC system are, a compressor, condenser, evaporator, and expansion valve. Conditioned air is circulated inside the cabin using a blower, duct system and air vents. The AC condenser is the most critical component in AC circuit as it rejects heat, thereby providing for a cooling effect inside the cabin.
Technical Paper

Impact Analysis of an Alternate Environment Friendly Refrigerant Deployed in the Air Conditioning System of IC Engine and Electric Vehicles

2023-09-14
2023-28-0038
Today, most vehicles in developing countries are equipped with air conditioning systems that work with Hydro-Fluoro-Carbons (HFC) based refrigerants. These refrigerants are potential greenhouse gases with a high global warming potential (GWP) that adversely impact the environment. Without the rapid phasedown of HFCs under the Kigali Amendment to the Montreal Protocol and other actions, Earth will soon pass climate tipping points that will be irreversible within human time dimensions. Up to half of national HFC use and emissions are for the manufacture and service of mobile air conditioning (MAC). Vehicle manufacturers supplying markets in non-Article 5 Parties have transitioned from HFC-134a (ozone-safe, GWP = 1400; TFA emissions) to Hydro-Fluoro-Olefin, HFO-1234yf (ozone-safe, GWP < 1; TFA emissions) due to comparable thermodynamic properties. However, the transition towards the phasing down of HFCs across all sectors is just beginning for Article 5 markets.
Technical Paper

Development of Mold in Color Plastics to Eliminate Paint without Compromising Aesthetic & Functional Requirements

2023-05-25
2023-28-1321
Vehicle aesthetic appearance is critical factor in the perceived quality of a vehicle. Auto OEM focuses on the improvement of perceived quality. The perceived quality of a vehicle is improved by achieving a superior finish on the visible parts. Plastic parts used in visible areas are painted to achieve a superior finish & aesthetic. However, the painting process is very energy intensive, releases a lot of harmful VOCs into the environment, emits carbon di-oxide into the environment & is a very costly process. Also, painted parts pose a challenge for recycling at the end of life. For painting one square meter area, around 6.5 Kg of co2 is released. Additionally, the painting cost contributes to around 60 % of the part cost. As the emphasis has increased on sustainability & reducing the cost, we took the challenge to develop novel mold in color material to eliminate the painting process without compromising the aesthetic & functional requirements of part.
Technical Paper

Optimized Variable Gear Ratio Steering System with Reduced EPAS Motor Size Achieving Performance Targets

2022-03-29
2022-01-0874
In electric power assisted steering system (EPAS), the steering assistance torque is provided by the electric motor. The motor rating is decided based on rack force requirement which depends on the vehicle weight, steering gear ratio, wheel angles etc. The load on the EPAS motor varies with respect to the steered angles of the road wheels. The motor experiences higher load towards the road wheel lock position. Most of the steering systems used on passenger cars has rack and pinion gear with constant gear ratio (C-factor). The constant gear ratio is decided to create right balance between vehicle handling behavior and steering effort. The constant gear ratio exerts higher steering load which the EPAS motor is required to support up to road wheel lock angles and hence EPAS motor size increases. This paper presents variable gear ratio (VGR) steering system in which gear ratio varies from center towards end lock stroke of rack & pinion.
Technical Paper

Effect of Welding Consumables on Static and Dynamic Properties of Representative Welded Joints for Chassis Structure

2021-09-22
2021-26-0259
Automotive suspension system forms the basis for the design of vehicle with durability, reliability, dynamics and NVH requirements. The automotive suspension systems are exposed to dynamic and static loads which in turn demands the highest integrity and performance against fatigue based metallic degradation. The current focus in automotive industry is to reduce the weight of the automotive parts and components without compromising with its static and dynamic mechanical properties. This weight reduction imparts fuel efficiency with added advantages. High-Strength Low Alloy steel (HSLA) offers optimum combination of ductility, monotonic and cyclic mechanical properties. Furthermore, welding processes offer design flexibility to achieve robust and lightweight designs with high strength steels.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

A Multiphysics Approach for NVH Analysis of PMSM Traction Motor

2021-09-22
2021-26-0520
Electric vehicles are fast expanding in market size, and there are increasing customer expectations on all aspects of the vehicle, including its noise and vibrational characteristics. Irritable noise from traction motors account for around 15% of the overall noise in an electric vehicle, and thus, has a need to be analysed and studied. This study focuses on identifying the critical vibro - acoustic orders for an 8 pole PMSM (Permanent Magnet Synchronous Motor) for three cases - healthy, with static eccentricity and with dynamic eccentricity. PMSM motors are widely used for traction and other applications due to their higher power density along with compact size. A coupled approach between electromagnetic and vibro - acoustic simulation is deployed to characterise the NVH behaviour of the motor.
Technical Paper

Simulink Model for SoC Estimation using Extended Kalman Filter

2021-09-22
2021-26-0382
State of Charge (SoC) estimation of battery plays a key role in strategizing the power distribution across the vehicle in Battery Management System. In this paper, a model for SoC estimation using Extended Kalman Filter (EKF) is developed in Simulink. This model uses a 2nd order Resistance-Capacitance (2RC) Equivalent Circuit Model (ECM) of Lithium Ferrous Phosphate (LFP) cell to simulate the cell behaviour. This cell model was developed using the Simscape library in Simulink. The parameter identification experiments were performed on a new and a used LFP cell respectively, to identify two sets of parameters of ECM. The cell model parameters were identified for the range of 0% to 100% SoC at a constant temperature and it was observed that they vary as a function of SoC. Hence, variable resistance and capacitance blocks are used in the cell model so that the cell parameters can vary as a function of SoC.
Technical Paper

Effects of Environmental Factors on Flexural Properties of Long Fiber Reinforced Polymer Composite

2021-09-22
2021-26-0257
Environmental regulation, operating cost reduction and meeting stringent safety norms are the predominant challenges for the automotive sector today. Automotive OEMs are facing equally aggressive challenges to meet high fuel efficiency, superior performance, low cost and weight with enhanced durability and reliability. One of the key technologies which enable light weighting and cost optimization is the use of fiber reinforced polymer (FRP) composite in automotive chassis systems. FRP composites have high specific strength, corrosion and fatigue resistance with additional advantage of complex near net shape manufacturing and tailor made properties. These advantages makes FRPs an ideal choice for replacing conventional steel chassis automotive components. However, FRP’s face challenges from operating environment, in particular temperature and moisture.
Technical Paper

Continuous Fiber Reinforced Composite Container for N1 Category of Vehicles

2021-09-22
2021-26-0251
The small commercial vehicle business is driven by demand in logistic, last mile transportation and white goods market. And to cater these businesses operational and safety needs, they require closed container on vehicle. As of now, very few OEM’s provide regulatory certified container vehicle because of constrains to meet inertia class of the vehicle. This paper focuses on design of a durable and extremely reliable container, made of the low-cost economy class glass fibre & core material. The present work provides the means to design the composite container for the N1 category of the vehicle. The weight of after-market metal container ranges between 300-350 Kg for this category of vehicle, which affects the overall fuel economy and emission of the vehicle. A detailed CAE analysis is done to design composite container suitable to meet inertia class targets and to achieve weight reduction of 30-40% as compared to metal container.
Technical Paper

Estimation of End of Life of Lithium-Ion Battery Based on Artificial Neural Network and Machine Learning Techniques

2021-09-22
2021-26-0218
Various vehicle manufacturers are launching electric vehicles, which are more sustainable and environmentally friendly. The major component in electric vehicles is the battery, and its performance plays a vital role. Usually, the end of life of a battery in the automobile sector is when the battery capacity reaches 80% of its maximum rated capacity. The capacity of a lithium-ion cell declines with the number of cycles. So, a semi-empirical model is developed for estimating the maximum stored capacity at the end of each cycle. The parameters considered in the model explain the changes in battery internal structure, like capacity losses at different conditions. The capacity estimated using the semi-empirical model is further taken as the inputs for estimating capacity using the Artificial Neural Network (ANN) and Machine Learning (ML) techniques i.e., Linear Regression (LR), Gaussian Process Regression (GPR), Support Vector Machine methods (SVM).
Technical Paper

A Comparative Study of Source Vibration Between the Electric Motor and Internal Combustion Engine Application for Passenger Vehicles

2021-09-21
2021-01-1243
In an electric vehicle, internal combustion engines are replaced by the electric motor. As a result, the signature of source vibration changes. The noise, vibration and harshness (NVH) issues are entirely different in electric vehicle (EV) compared to internal combustion engine (ICE) due to the change in source vibration. The outline of this paper is a comparative study of source vibration, the challenges to address various noise issues related to source vibration and the isolation methodology. A case study is presented to show the different methods of treatment required to mitigate source vibration issues during the electric vehicle development program. Keywords: Engine, Motor, vibration
X